BOARD OF REGENTS

FINANCE & FACILITIES COMMITTEE

MEETING AGENDA

March 8, 2022 1:30 p.m.
VIRTUAL MEETING
Call to Order, Confirmation of a Quorum, and Adoption of Agenda
The University of New Mexico
Board of Regents’ Finance and Facilities Committee
March 8, 2022, 1:30 p.m.
Held Virtually, Via Zoom
https://live.unm.edu/board-of-regents

AGENDA

1. **ACTION ITEM:** Call to Order, Confirmation of a Quorum, and Adoption of Agenda

2. **COMMENTS:** Open for Comments

3. **ACTION ITEM:** Approval of Finance and Facilities Committee Meeting Summary from February 8, 2022

4. **ACTION ITEM:** Approval of Disposition of Surplus Property for January 2022
 (Presenter: Bruce Cherrin, Chief Procurement Officer, Purchasing Department)

5. **ACTION ITEM:** Project Construction Approvals:
 a. Silver Family Geology Museum Renovation
 b. Northrop Hall Radiogenic Isotopes Lab HVAC
 c. UNM-Taos Harwood Museum HVAC Improvement
 d. Biomedical Research Facility BLS-2 Lab Airflow Modifications
 (Presenter: Lisa Marbury, Assistant VP, Campus Environments & Administration)

6. **ACTION ITEM:** Approval of Lease: UNM Early Childhood Services Center, 4400 Alameda NE, Suites A and B, Albuquerque, NM, 87113
 (Presenter: Tom Neale, Director of Real Estate)

7. **ACTION ITEM:** Approval of Appointments of Representatives from the Lobo Development Corporation to the South Campus Tax Increment Development District (TIDD) Board
 (Presenter: Kelly Ward, LDC Director)

8. **ACTION ITEM:** Approval of the Sale of Real Property to Tucker Acquisitions, LLC
 (Presenters: Kelly Ward, LDC Director, and Tom Neale, Director of Real Estate)

9. **ACTION ITEM RECOMMENDATIONS:** Recommendations for Consent Agenda Items on Full Board of Regents’ Agenda
 (Sandra Begay, Chair, Regents’ Finance & Facilities Committee)

10. **INFORMATION ITEM:** UNM Foundation Fundraising and Investment Performance Report
 (Presenter: Kenny Stansbury, CFO, UNMF)

11. **INFORMATION ITEM RECOMMENDATIONS:** Recommendations for Information Agenda Items to be Added to the Full Board of Regents’ Agenda
 (Sandra Begay, Chair, Regents’ Finance & Facilities Committee)

12. **EXECUTIVE SESSION:** None
#2

COMMENTS
COMMENTS:

Open for Comments
Approval of Finance and Facilities Committee Meeting Summary from February 8, 2022
Committee Members Present: Regent Sandra Begay, Chair
Regent Rob Schwartz, Vice Chair
Regent William Payne

Non-Voting Committee Members Present: Regent Doug Brown, President

Administration Present: Garnett Stokes, University President; Teresa Costantinidis, SVP for Finance and Administration (SVPFA); and James Holloway, EVP for Academic Affairs/ Provost

Presenters in Attendance: Bruce Cherrin, Purchasing; Norma Allen, University Controller; Eddie Núñez, Athletics; Elizabeth Metzger, Controller; Nicole Dopson, Academic Affairs/ Provost Office; Lisa Marbury, ISS; Lisa Kuuttila, UNM Rainforest Innovations; Kelly Ward, Lobo Development Corporation; Jason Strauss, Lobo Energy Incorporated; and Riley White, Teach and Learning.

ACTION ITEMS:

1. Call to Order, Confirmation of a Quorum, and Adoption of Agenda. Regent Schwartz called the virtual meeting to order at 1:30 p.m. and confirmed that a quorum was established with Regent Payne and Regent Schwartz present. Regent Schwartz moved to adopt the agenda and Regent Payne seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.

COMMENTS:

2. There were no public comments.

ACTION ITEMS (continued):

3. Approval of Finance and Facilities Committee Meeting Summary from November 30, 2021. Regent Schwartz moved to approve and Regent Payne seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.

4. Approval of Disposition of Surplus Property for November and December 2021. Bruce Cherrin gave the presentation. Regents’ approval was requested for the disposition of surplus property for November and December 2021. Items listed in the E-Book are either obsolete or beyond repair. The detailed reports are in the E-book. Regent Schwartz moved to approve and Regent Payne seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.

INFORMATION ITEM:

ACTION ITEMS (continued):

6. Approval of the New Mexico Higher Education Department, Institutional Finance Division, 2nd Quarter Financial Actions Report and Certification through January 31, 2022. Norma Allan gave the presentation. Regents’ approval of the second Quarter Financial Actions report and certification through January 31, 2022 was requested. The Quarterly Financial Actions Report is a one-page report submitted to the Higher Education Department (HED), comprised of "yes" or "no" questions regarding the University's financial transactions. Answering any question "yes" requires further information to be provided to HED. There were no budget changes to report and a "no" response was provided for each question because all financial changes have been reflected in the Budget Adjustment Request (BAR). The detailed report is in the E-book. **Regent Schwartz moved to approve and Regent Payne seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.**

7. Approval of 2nd Quarter Athletics’ Enhanced Fiscal Oversight Program Report and Certification through December 31, 2021, and 2nd Quarter Information on Athletics’ Report by Sport through December 31, 2021. Eddie Nunez gave the presentation. Regents’ approval was requested for the Athletics' Report and Certification instituted by the New Mexico Higher Education Department (HED). The report covers the FY22 second quarter financial status and budget exhibits for the Athletics’ department. The detailed report is in the E-book. **Regent Schwartz moved to approve and Regent Payne seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.**

Eddie Nunez gave the presentation on the 2nd Quarter Information on Athletics’ Report by Sport through December 31, 2021. The report describes the pooled revenues and directed revenues by sport for FY22 budget and actuals year-to-date through December 31, 2021. This report also compares FY22 budget to quarterly actuals, and FY22 year-to-date actuals to prior year-to-date actuals. The detailed report is in the E-book

ACTION ITEMS (continued):

8. Project Construction Approvals or Re-Approvals of:
 - **Approval for Student Residence Center Stairs and Repair & Modification Phase 2, Main Campus, Albuquerque, New Mexico.** Lisa Marbury gave the presentation. Regents’ approval was requested for the approval of Student Residence Center Stairs Repair & Modification Phase 2. The total estimated project budget is $1.07M. The detailed report is in the E-book.
 - **Approval for Clinical Translational Science Center (CTSC) Roof Replacement, North Campus, Albuquerque, New Mexico.** Lisa Marbury gave the presentation. Regents’ approval was requested for the Center for Clinical Translational Science Center (CTSC) Roof Replacement. The total estimated project budget is $680K. The detailed report is in the E-book.
 - **Approval for Student Union Building Partial Roof Replacement Phase 2.** Lisa Marbury gave the presentation. Regents’ approval was requested for the Student Union
Building Partial Roof Replacement Phase 2. The total estimated project budget is $460K. The detailed report is in the E-book.

Regent Schwartz moved to approve and Regent Payne seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.

9. Approval of Reappointment to UNM Rainforest Innovations Board of Directors. Elizabeth Kuuttila gave the presentation. Regents’ approval was requested for the re-appointment of David Gibson to its Board of Directors. The appointments are for a four-year term beginning July 1, 2022 through June 30, 2026, these are subject to approval by the Board of Regents. Mr. Gibson’s biography is included in the E-book. Regent Payne moved to approve and Regent Schwartz seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.

10. Approval of Central and University Project Development Proposal and Agreement/ Real Estate Development and Management of Regent-Owned Land. Kelly Ward gave the presentation. The proposed site is envisioned as a mixed-use zone that will provide a range of retail, office and housing. At this stage LDC would like to formally engage with the City of Albuquerque to on behalf of the Regents to prepare the site by demolishing a vacant building at the corner of University and Central. The detailed report is in the E-book. Regent Payne moved to approve and Regent Schwartz seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.

11. Recommendations for Consent Agenda Items on Full Board of Regents’ Agenda. Regent Begay recommended items 6 through 9 be placed on the full Board of Regents’ consent agenda. Regent Schwartz moved to approve and Regent Payne seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.

INFORMATION ITEM(S) (continued):

17. Recommendations for Information Agenda Items on Full Board of Regents’ Agenda. Regent Begay recommended item 5 be placed on the full Board of Regents’ consent agenda. Regent Schwartz moved to approve and Regent Payne seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.

EXECUTIVE SESSION:

18. None

Regent Payne moved to adjourn at 4:30 p.m. and Regent Schwartz seconded. The motion passed by unanimous vote with a quorum of committee members present and voting.
#4

Approval of Disposition of Surplus Property for January 2022
UNIVERSITY SERVICES – DISPOSITION OF SURPLUS PROPERTY
JANUARY 2022
<table>
<thead>
<tr>
<th>Memo</th>
<th>Asset Tag</th>
<th>Department</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Purchased</th>
<th>Total Cost ($)</th>
<th>NBV ($)</th>
<th>Disposal Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N00004200</td>
<td>Chemistry Department</td>
<td>Mass Spectrometry System</td>
<td>Waterscorp</td>
<td>6/28/2005</td>
<td>$229,717.69</td>
<td>$0.00</td>
<td>Beyond Repair</td>
</tr>
<tr>
<td>2</td>
<td>N00020153</td>
<td>Neurosciences</td>
<td>Infrared Imaging System</td>
<td>LiCorBio Part #9201-10</td>
<td>3/24/2009</td>
<td>$45,661.84</td>
<td>$0.00</td>
<td>Beyond Repair</td>
</tr>
<tr>
<td>3</td>
<td>253700</td>
<td>Admissions Office</td>
<td>MV BUS</td>
<td>BlueBird</td>
<td>1/11/2002</td>
<td>$38,545.00</td>
<td>$0.00</td>
<td>Too Costly to Repair</td>
</tr>
<tr>
<td>4</td>
<td>N00007380</td>
<td>ARTS Lab</td>
<td>Projector System/DLPSingleChannel</td>
<td>SkySkanInc</td>
<td>5/3/2006</td>
<td>$35,876.25</td>
<td>$0.00</td>
<td>Obsolete</td>
</tr>
<tr>
<td>5</td>
<td>N00007556</td>
<td>KNME Engineering Local State Wide</td>
<td>Vehicle</td>
<td>Ford</td>
<td>5/24/2006</td>
<td>$20,979.00</td>
<td>$0.00</td>
<td>Too Costly to Repair</td>
</tr>
<tr>
<td>6</td>
<td>N00004207</td>
<td>IM Div of Cardiology</td>
<td>Pulse Wave Analysis System</td>
<td>MillarInst SphygmoCor</td>
<td>6/28/2005</td>
<td>$20,500.00</td>
<td>$0.00</td>
<td>Obsolete</td>
</tr>
<tr>
<td>7</td>
<td>N00015431</td>
<td>Gallup Physical Plant</td>
<td>Vehicle</td>
<td>Buick 2007</td>
<td>3/27/2008</td>
<td>$20,140.00</td>
<td>$0.00</td>
<td>Too Costly to Repair</td>
</tr>
<tr>
<td>8</td>
<td>217585</td>
<td>Chem & Resrch Lab Supplier (CRLS)</td>
<td>MV TRK UNDER 1 TON</td>
<td>Dodge</td>
<td>4/24/1996</td>
<td>$17,004.00</td>
<td>$0.00</td>
<td>Obsolete</td>
</tr>
<tr>
<td>9</td>
<td>229163</td>
<td>BSCI Faculty #18</td>
<td>MV PASSENGER CAR</td>
<td>Chevrolet</td>
<td>2/28/1998</td>
<td>$15,095.00</td>
<td>$0.00</td>
<td>Beyond Repair</td>
</tr>
<tr>
<td>10</td>
<td>N00018128</td>
<td>Art Art History Gen Admin</td>
<td>Copier</td>
<td>AlbDupSup</td>
<td>10/7/2008</td>
<td>$14,795.00</td>
<td>$0.00</td>
<td>Obsolete</td>
</tr>
<tr>
<td>11</td>
<td>227893</td>
<td>Gallup Physical Plant</td>
<td># SBDO - MV PASSENGER CAR</td>
<td>Ford</td>
<td>10/31/1997</td>
<td>$14,711.00</td>
<td>$0.00</td>
<td>Too Costly to Repair</td>
</tr>
<tr>
<td>8</td>
<td>N00014319</td>
<td>Chem & Resrch Lab Supplier (CRLS)</td>
<td>Pickup Truck</td>
<td>Ford 2008</td>
<td>12/17/2007</td>
<td>$11,723.00</td>
<td>$0.00</td>
<td>Obsolete</td>
</tr>
<tr>
<td>12</td>
<td>237120</td>
<td>Residence Life and Student Housing</td>
<td>MV TRK UNDER 1 TON</td>
<td>Chevrolet</td>
<td>7/8/1999</td>
<td>$10,447.00</td>
<td>$0.00</td>
<td>Beyond Repair</td>
</tr>
<tr>
<td>255452</td>
<td>Cancer Research Treatment Ctr CRTC</td>
<td>MOTOR MOTION CAMERA</td>
<td>SkcGulf</td>
<td>5/23/2002</td>
<td>$7,699.00</td>
<td>$0.00</td>
<td>Obsolete</td>
<td></td>
</tr>
<tr>
<td>261954</td>
<td>Cancer Research Treatment Ctr CRTC</td>
<td>SCANNER SYSTEM</td>
<td>BioRad</td>
<td>7/3/2003</td>
<td>$7,610.00</td>
<td>$0.00</td>
<td>Beyond Repair</td>
<td></td>
</tr>
<tr>
<td>218372</td>
<td>Center for High Tech Materials CHTM</td>
<td>SPOTSCAN</td>
<td>PerkinElme</td>
<td>5/30/1996</td>
<td>$7,018.00</td>
<td>$0.00</td>
<td>Cannibalized</td>
<td></td>
</tr>
<tr>
<td>N00000161</td>
<td>AS LTER Network Faculty #2</td>
<td>Computer, Server</td>
<td>Dell Dell</td>
<td>9/9/2004</td>
<td>$6,843.28</td>
<td>$0.00</td>
<td>Obsolete</td>
<td></td>
</tr>
<tr>
<td>200545</td>
<td>Molecular Genetics Microbiology</td>
<td>THERMAL ANALYSIS UNT</td>
<td>PerkinElme</td>
<td>3/4/1993</td>
<td>$6,709.00</td>
<td>$0.00</td>
<td>Obsolete</td>
<td></td>
</tr>
<tr>
<td>N00024794</td>
<td>CHTM PI #9</td>
<td>Laser Driver/Diode</td>
<td>Night</td>
<td>3/9/2010</td>
<td>$6,111.00</td>
<td>$0.00</td>
<td>Cannibalized</td>
<td></td>
</tr>
<tr>
<td>N00024795</td>
<td>CHTM PI #9</td>
<td>Laser Driver/Diode</td>
<td>Night</td>
<td>3/9/2010</td>
<td>$6,111.00</td>
<td>$0.00</td>
<td>Cannibalized</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>N00064803</td>
<td>Emerg Med EMS Gen Admin</td>
<td>AdultAirwayTrainer/160410</td>
<td>SynDaver</td>
<td>3/7/2018</td>
<td>$6,033.00</td>
<td>$1,709.35</td>
<td>Beyond Repair</td>
</tr>
</tbody>
</table>
Surplus Property Disposition - January 2022

<table>
<thead>
<tr>
<th>Memo</th>
<th>Asset Tag</th>
<th>Department</th>
<th>Description</th>
<th>Manufacturer</th>
<th>Purchased</th>
<th>Total Cost ($)</th>
<th>NBV ($)</th>
<th>Disposal Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO0021493</td>
<td>Dental Services</td>
<td>Gas Analazer</td>
<td>Criticare</td>
<td>7/9/2009</td>
<td>$5,771.73</td>
<td>$0.00</td>
<td>Obsolete</td>
<td></td>
</tr>
<tr>
<td>179120</td>
<td>Center for High Tech Materials CHTM</td>
<td>GENERATOR SIGNAL</td>
<td>Wavetek</td>
<td>1/1/1987</td>
<td>$5,705.00</td>
<td>$0.00</td>
<td>Cannibalized</td>
<td></td>
</tr>
<tr>
<td>176893</td>
<td>Center for High Tech Materials CHTM</td>
<td>GENERATOR SIGNAL</td>
<td>Fluke</td>
<td>1/1/1987</td>
<td>$5,310.00</td>
<td>$0.00</td>
<td>Cannibalized</td>
<td></td>
</tr>
<tr>
<td>253061</td>
<td>Center for High Tech Materials CHTM</td>
<td>CUTTER</td>
<td>N/A</td>
<td>11/9/2001</td>
<td>$5,283.00</td>
<td>$0.00</td>
<td>Obsolete</td>
<td></td>
</tr>
<tr>
<td>240614</td>
<td>Center for High Tech Materials CHTM</td>
<td>ELECTROMETER</td>
<td>Keithley</td>
<td>2/22/2000</td>
<td>$5,036.00</td>
<td>$0.00</td>
<td>Cannibalized</td>
<td></td>
</tr>
</tbody>
</table>

Total Asset Disposition (#)	27
Total Capitalization ($)	$593,934.79
Total Net Book Value ($)	$1,709.35
December 14, 2021

To: Inventory Control

From: Fred Fuchs
Research Engineer
Department of Chemistry and Chemical Biology

To whom it may concern,

We have a Waters LCT Premier Mass Spec, tag#N00004200 that needs to be removed from the department.

- What the item was used for: This item was used analyze samples for various research in multiple chemistry labs. Mass Spectrometry is an analytical tool useful for measuring the mass-to-charge ratio (m/z) of one or more molecules present in a sample. These measurements can often be used to calculate the exact molecular weight of the sample.
- Reason for Disposal: This item is non-functional and repairs are cost-prohibitive as they cost more than a new system
- Purchase Date: June 28, 2005
- Total Cost: $153,910.85
- Current book value is $229,717.69.

<table>
<thead>
<tr>
<th>UNM Tag</th>
<th>Serial Number/VIN</th>
<th>Manufacturer</th>
<th>Description</th>
<th>Model</th>
<th>Total Cost</th>
<th>Net Book Value</th>
<th>Adjusted Cost</th>
<th>Purchase Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>N00004200</td>
<td>NA</td>
<td>Waterscorp</td>
<td>Mass Spectrometry System</td>
<td>LCT Premier</td>
<td>$153,910.85</td>
<td>$0.00</td>
<td>$229,717.69</td>
<td>6/28/2005</td>
</tr>
</tbody>
</table>

The system has been purged and cleaned, it is ready for pickup.

Thank you
Fred Fuchs

__
Department Chair
Jeremy Edwards
Disposition of Surplus property – UNM Tag #N00020153

August 16, 2021

To: University Services
From: Neurosciences
RE: LiCorBio Infrared Imaging System

University Services UNM Tag N00020153 was purchased 03/05/2009 by the Department of Neurosciences for $41,924. This piece of scientific research equipment was used as a spectrophotometer to support Neurosciences and UNM’s research mission. This asset has an adjusted cost of $45,661.84 with a net book value (NBV) of $0. The equipment item is not functioning and cannot be repaired per technical consultation with the manufacturer.

We are requesting surplus of this item to remove it from our inventory to make space for other shared equipment in the room.

Thank you for your consideration.

Charles LeBlanc, Department Administrator
Neurosciences
To: University Services, Surplus Property
Cc: Director Safety Risk Services
From: Matthew Hulett, Director Office of Admissions
Date: December 8, 2021
Re: Disposal of UNM Vehicle #1125, Asset Tag #253700

Asset Tag 253700 belongs to a 2002 Chevy BlueBird B1VC1800 MiniBus, that was added to our inventory on 1/11/2002. The original price is $38,545.06, we are not able to acquire the current net value as Kelly Blue Book and NADA do not show anything for this vehicle. The 2002 Chevy Bluebird was used for campus tours, which are currently taking place on main campus so we no longer require this vehicle for tours. The reasons for disposal is that the vehicle requires continual maintenance and is too costly to repair.

Thank you,
Matt Hulett, Director Office of Admissions

[Signature]
The SkySkanInc DLP projector system was purchased on 05/03/2006 to serve projection dome work at the ARTSLab for research. The net book value is ($0.00), total cost is $31,310.00 and the adjusted cost is $35,876.25.

This projector is a 2006 model that is no longer under support. The projector is no longer working and has been sitting unused for a few years. Repair parts are outdated and not available to keep this projector running. It also has outdated technology that no longer works with modern computers to allow projections. We are requesting the disposal of this item due to it not functioning.

Thank you,

Michelle T. Evans
System Analysts II
College of Fine Arts
University of New Mexico
505.277.4987
Memo

To: University Services
From: Steven Campbell, Manager Information Technology
Date: 10/29/2021
Re: Surplus of item N00007556

This memo serves as a request to remove the below items from our inventory list.

Item N00007556, Ford 2006 Supercab truck; is an older vehicle that is too costly to service and keep running. It was purchased in 2006. It was taken out of service as 3 years ago as it is unreliable for use for our engineering team which often needs to travel to remote locations to service our statewide translator system. The trucks age makes it difficult to find parts to repair it. The vehicle has reached its 15 years useful life and as a result, it is no longer cost effective to keep running.

This vehicle was purchased on 5/24/2006 at a cost of $20,979. It adjusted cost is $20,979 and it currently has a net book value of $0.00.

Thank you for your attention to this matter. If you should have any further questions please feel free to contact Steven Campbell at 505-379-3571 or scampbell@nmpbs.org.
April 28, 2021

Memorandum

To: Norris Cain, Supervisor, General Services, UNM Surplus Property

From: Mark Sheldon, MD, Internal Medicine Cardiology Division

Subject: Asset #N0004207 – Pulse Wave Analysis System

This memo is to justify the disposal of the UNM Asset #N00004207, Pulse Wave Analysis System MFG: MiliarinstAtcor Medical, Model #:MM3, Serial #:RS-232.

Total cost $20,500.00, net book value $0.00, purchased 05/04/2005 and adjusted cost is $20,500.00.

This equipment was used in our Internal Medicine Cardiology Heart Station and Clinic for Cardiology tests but is outdated and no longer being used. If need, I can be reached at 272-4253

Thank you.
December 16, 2021
To: UNM Surplus Property Department
Re: Disposition of Surplus Property – UNM Tags N00015431, N00008779, 227893

Asset Tag N00015431 is for a 2007 Buick Lacrosse vehicle that was purchased on 03/27/2008 for $20,140.00 as a fleet vehicle for UNM Gallup faculty, staff, and administration to utilize for local and distance travel to and from the main campus and other travel as required. University Services lists this unit’s adjusted cost as $20,140.00 and net Book Value of $0.00 This vehicle is now 15 years old and is rarely used for travel as it is no longer dependable and requires above average maintenance to keep it in good repair. We now have newer vehicles that are utilized as needed and this vehicle is no longer needed and is cost prohibitive to continue on-going repairs. UNM Gallup’s Fleet Manager and the CFO has identified this as a cost saving measure and its deletion from the UNM G Fleet inventory will save insurance, maintenance and overhead.

Asset Tag N00008779 is for a 2006 Chevrolet Impala vehicle that was purchased on 8/23/2006 for $17,500.00 as a fleet vehicle for UNM Gallup faculty, staff, and administration to utilize for local and distance travel to and from the main campus and other travel as required. University Services lists this unit’s adjusted cost as $17,500.00 and net Book Value of $0.00 This vehicle is now 19 years old and is rarely used for travel as it is no longer dependable and requires above average maintenance to keep it in good repair. We now have newer vehicles that are utilized as needed and this vehicle is no longer needed and is cost prohibitive to continue on-going repairs. UNM Gallup’s Fleet Manager and the campus CFO has identified this as a cost saving measure and its deletion from the UNMG Fleet inventory will save insurance, maintenance and overhead.

Asset Tag 227893 is for a 1997 Ford Taurus vehicle that was purchased on 10/31/1997 for $14,711.00 as a fleet vehicle for UNM Gallup faculty, staff, and administration to utilize for local and distance travel to and from the main campus and other travel as required. University Services lists this unit’s adjusted cost as $14,711.00 and net Book Value of $0.00 This vehicle is now 24 years old and is rarely used for travel as it is no longer dependable and requires above average maintenance to keep it in good repair. We now have newer vehicles that are utilized as needed and this vehicle is no longer needed and is cost prohibitive to continue repairs. UNM Gallup’s Fleet Manager and the campus CFO has identified this as a cost saving measure and its deletion from the UNMG Fleet inventory will save insurance, maintenance and overhead.

Thank you,

Ron Petranovich
Mgr Physical Plant & Facilities
UNM Gallup FMD
505-863-7567 / ronp@unm.edu
January 6, 2022

University Services

Attention: Marcos Roybal, Associate Director, University Services

CC: Norris Cain, Supervisor, General Services, Surplus Property
Re: Disposition of CRLS Property - UNM Asset Tag #N00014319 & 217585

Dear Mr. Roybal,

I am writing to confirm a Request for Disposition that included the following UNM Asset Tag #N00014319 and UNM Asset Tag #217585. UNM Tag # N00014319 (Ford Ranger) was purchased on December 17, 2007 for a total $10,723.00 and an adjusted cost of $11,723.00 UNM Tag# 217585 (Dodge Clubcab) was purchased on April 24, 1996 for a total and adjusted cost of $17,004.00. These vehicles were used for delivering research lab supplies, chemicals, gas cylinders, and dewars throughout the UNM Campus and both have a net book value (NBV) of $0.00. These vehicles have had high maintenance costs and is no longer used due to improved route efficiency.

We believe our decision to send these vehicles to UNM Surplus Property surplus will result in monthly cost savings, which include insurance expenses, fuel expenses, and the aforementioned repair and maintenance expenses. Thank you for your consideration.

Sincerely,

Amanda Luna
CRLS Manager
Chemical & Research Lab Supplier
505-277-5116
To: UNM Inventory
From: Jodi Perry, Department Administrator
Date: 12/7/21
Re: Surplus Request UNM Vehicle 687, Asset Tag 229163

UNM Vehicle 687, Asset Tag 229163 was purchased 02/28/1998 for a total and adjusted cost of $15,095.00. This vehicle was used by faculty and staff of the Community Environmental Health Program to travel to/from UNM and the Navajo Nation to meet with participant families for the Navajo Birth Cohort Study. It now has a current net book value of $0.00. Per the UNM Fleet Maintenance, this vehicle needs major repairs ($3k-$5k) and costly monthly maintenance to keep the transmission and engine running well enough to drive to remote areas of the Navajo Nation.

We believe our decision to send this vehicle to UNM Surplus will result in monthly cost savings, which include insurance expenses, fuel expenses, and the previously mentioned repair and maintenance expenses. Thank you for your assistance in removing this vehicle from our inventory.
Disposition of Surplus Property - UNM Asset Tag #N00018128

December 21, 2021

To: Brandon Harrie
From: Jacklyn Le
Subject: Copier Disposition

Dear Mr. Harrie:

UNM Asset Tag #N00018128 was purchased on 10/07/2008 by UNM’s Art Department for $8,295.00. This item was used for daily printing needs for our art studio, history, and education department. It has a net book value (NBV) of ($0.00), total cost ($8,295.00), and adjusted cost ($14,795.00). The machine is an older model and has not worked in years. We believe sending this copier to UNM Surplus Property will result in department savings that include cost of replacement parts and service maintenance. We thank you for your consideration.

Sincerely,

[Signature]

Jacklyn Le
Administrative Assistant II
Disposition of Surplus Property – UNM Tag #237120

November 16, 2021

To: Brandon J. Harrie
From: John Simmons
Subject: Vehicle Disposition

Greetings Mr. Harrie,

- UNM Tag #237120, Chevrolet S-10 Pickup (MV TRK UNDER 1 TON) was purchased on: July 08, 1999 by UNM RLSH for $10,447.00. The vehicle was mostly for general use; picking up materials, driving from to Student Family Housing and back to UNM main campus. This truck now has a net book value NBV of $0, leaving the adjusted cost at $10,447.00.

- This vehicle is currently not functioning, it’s not worth fixing, and we no longer have a need for it. Sending this truck to UNM Surplus will result in monthly cost savings, including: insurance, fuel, repair, and maintenance expenses.

Thank you for your consideration,

John Simmons
Administrative Assistant
Office Phone: (505) 277-3575
Email: jwsimmonsiii@unm.edu
2700 Campus Blvd NE
To: UNM Surplus Property
From: Sherrie MacFarlane, Operations Manager
Date: September 16, 2021
Subject: Equipment Disposition

These items listed below are being presented for disposition. Item N00064803, purchased 3/7/18, total cost and adjusted cost $6,033.00, and NBV, $1,709.35. These items are no longer functional and obsolete. We are surplussing them and removing them from UNM Inventory, to manage UNM resources in a fiscally responsible fashion.

<table>
<thead>
<tr>
<th>UNM Tag</th>
<th>Manufacturer</th>
<th>Model</th>
<th>Serial Number</th>
<th>Description</th>
<th>Total Cost</th>
<th>Adjusted Cost</th>
<th>NBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N00007572</td>
<td>MedEdTech</td>
<td>HPS363</td>
<td>M228</td>
<td>Human Patient</td>
<td>unknown</td>
<td>totally</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Simulator</td>
<td></td>
<td>depreciated</td>
<td></td>
</tr>
<tr>
<td>N00064803</td>
<td>SynDaver</td>
<td>160410</td>
<td>Unknown</td>
<td>Adult Airway</td>
<td>unknown</td>
<td>totally</td>
<td>$0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trainer</td>
<td></td>
<td>depreciated</td>
<td></td>
</tr>
</tbody>
</table>
13-6-1. Disposition of obsolete, worn-out or unusable tangible personal property.

A. The governing authority of each state agency, local public body, school district and state educational institution may dispose of any item of tangible personal property belonging to that authority and delete the item from its public inventory upon a specific finding by the authority that the item of property is:

1. of a current resale value of five thousand dollars ($5,000) or less; and
2. worn out, unusable or obsolete to the extent that the item is no longer economical or safe for continued use by the body.

B. The governing authority shall, as a prerequisite to the disposition of any items of tangible personal property:

1. designate a committee of at least three officials of the governing authority to approve and oversee the disposition; and
2. give notification at least thirty days prior to its action making the deletion by sending a copy of its official finding and the proposed disposition of the property to the state auditor and the appropriate approval authority designated in Section 13-6-2 NMSA 1978, duly sworn and subscribed under oath by each member of the authority approving the action.

C. A copy of the official finding and proposed disposition of the property sought to be disposed of shall be made a permanent part of the official minutes of the governing authority and maintained as a public record subject to the Inspection of Public Records Act [Chapter 14, Article 2 NMSA 1978].

D. The governing authority shall dispose of the tangible personal property by negotiated sale to any governmental unit of an Indian nation, tribe or pueblo in New Mexico or by negotiated sale or donation to other state agencies, local public bodies, school districts, state educational institutions or municipalities or through the central purchasing office of the governing authority by means of competitive sealed bid or public auction or, if a state agency, through the surplus property bureau of the transportation services division of the general services department.

E. A state agency shall give the surplus property bureau of the transportation services division of the general services department the right of first refusal when disposing of obsolete, worn-out or unusable tangible personal property of the state agency.

F. If the governing authority is unable to dispose of the tangible personal property pursuant to Subsection D or E of this section, the governing authority may sell or, if the property has no value, donate the property to any organization described in Section 501(c)(3) of the Internal Revenue Code of 1986.
G. If the governing authority is unable to dispose of the tangible personal property pursuant to Subsection D, E or F of this section, it may order that the property be destroyed or otherwise permanently disposed of in accordance with applicable laws.

H. If the governing authority determines that the tangible personal property is hazardous or contains hazardous materials and may not be used safely under any circumstances, the property shall be destroyed and disposed of pursuant to Subsection G of this section.

I. No tangible personal property shall be donated to an employee or relative of an employee of a state agency, local public body, school district or state educational institution; provided that nothing in this subsection precludes an employee from participating and bidding for public property at a public auction.

J. This section shall not apply to any property acquired by a museum through abandonment procedures pursuant to the Abandoned Cultural Properties Act [18-10-1 to 18-10-5 NMSA 1978].

K. Notwithstanding the provisions of Subsection A of this section, the department of transportation may sell through public auction or dispose of surplus tangible personal property used to manage, maintain or build roads that exceeds five thousand dollars ($5,000) in value. Proceeds from sales shall be credited to the state road fund. The department of transportation shall notify the department of finance and administration regarding the disposition of all property.

L. If the secretary of public safety finds that the K-9 dog presents no threat to public safety, the K-9 dog shall be released from public ownership as provided in this subsection. The K-9 dog shall first be offered to its trainer or handler free of charge. If the trainer or handler does not want to accept ownership of the K-9 dog, then the K-9 dog shall be offered to an organization described in Section 501(c)(3) of the Internal Revenue Code of 1986 free of charge. If both of the above fail, the K-9 dog shall only be sold to a qualified individual found capable of providing a good home to the animal.

Project Construction Approvals:

a. Silver Family Geology Museum Renovation
b. Northrop Hall Radiogenic Isotopes Lab HVAC
c. UNM-Taos Harwood Museum HVAC Improvement
d. Biomedical Research Facility BLS-2 Lab Airflow Modifications
MEMORANDUM TO ADVANCE COMMITTEE AGENDA ITEM TO
THE BOARD OF REGENTS
THE UNIVERSITY OF NEW MEXICO

DATE: March 8, 2022

TO: Teresa Costantinidis, Sr. VP Finance & Administration

FROM: Lisa Marbury, Assistant Vice President, Campus Environments & Facilities,
Vice President Office for Institutional Support Services

RE: Requested Construction Approval

RECOMMENDED ACTION:

Recommend to the Board of Regents Finance and Facilities Committee the following requests for Project Construction Approval:

1. Silver Family Geology Museum Renovation
2. Northrop Hall Radiogenic Isotopes Lab HVAC
3. UNM-Taos Harwood Museum HVAC Improvement
4. Biomedical Research Facility BLS-2 Lab Airflow Modifications

cc: A. Coburn, M. Dion, M. Bailey, C. Martinez, S. Rodgers, M. Pierce– PDC
 A. Sena, R. Notary, D. Penasa, R. Sobieski, C. Grotbeck, J. Hart– FM
REQUEST FOR CAPITAL PROJECT CONSTRUCTION APPROVAL for
SILVER FAMILY GEOLOGY MUSEUM RENOVATION
UNIVERSITY OF NEW MEXICO
March 8, 2022

REQUESTED ACTION:

In accordance with Section 7.12 of the Board of Regents Policy Manual and as required by the New Mexico Higher Education Department and New Mexico State Board of Finance, project approval is requested for the Silver Family Geology Museum Renovation on the Albuquerque Main Campus.

PROJECT DESCRIPTION:

The project is located in Northrop Hall, Room 107 and will renovate 1,754 square feet to include new wall, ceiling and floor finishes, new LED light fixtures and new exhibit display cases. Interpretive content will include gems & minerals, planetary geology, vertebrate paleontology, an active seismograph and a fluorescent mineral exhibit.

PROJECT RATIONALE:

The museum was established in the 1930’s by Stuart Northrop (after whom the building is named) and provides public exhibits of mineral, fossil and rock specimens. The last update to the exhibits occurred in 1987. The primary audience is educators and school groups; however, the museum is visited by thousands of visitors each year and is used for special classes, fundraising, alumni events and various receptions. The design includes a new security system, new casework, new LED lighting, a 3D model of the Galena King Mine and new interpretive content to improve the overall visitor experience. The existing space has deteriorating carpet and ceiling tiles, outdated lighting and casework, and no security system to protect valuable specimen. The consequences of not approving this project will result in poor visibility to the general public, alumni, the various user groups and missed teaching opportunities for Faculty and Students.

FUNDING:

The total estimated Project Budget is: $472,031

- $159,518 2019 State Appropriation General Funds
- $102,513 FY22 Facilities Investment Needs (FIN)
- $210,000 UNM Foundation Funding
The University of New Mexico - Central Campus

Northrop Hall Silver Family Geology Museum Renovation RM 107
A0024 – Northrop Hall
First Floor

Silver Family Geology Museum Renovation
A0024 Northrop Hall, Room 107
REQUEST FOR CAPITAL PROJECT CONSTRUCTION APPROVAL for
NORTHROP HALL RADIOGENIC ISOTOPES LAB HVAC
UNIVERSITY OF NEW MEXICO
March 8th, 2022

REQUESTED ACTION:
In accordance with Section 7.12 of the Board of Regents Policy Manual and as required by the New Mexico Higher Education Department and New Mexico State Board of Finance, project approval is requested for Radiogenic Isotopes Lab HVAC Improvements in Northrop Hall, at the Albuquerque Main Campus.

PROJECT DESCRIPTION:

A0024-Northrop Hall is 76,745 gross square feet (GSF) and comprised primarily of research laboratories and cleanrooms, with some administrative office and instruction spaces.

Removal of the no-longer-necessary Thermal Ionization Mass Spectrometer (TIMS) and relocation of the more-capable Multicolor Inductively-Coupled Plasma-Mass Spectrometer (MC ICP-MS) are required to support the research done in the Radiogenic Isotopes Labs. Upgrades to the HVAC systems and the controls systems serving those labs are required to provide an operable laboratory environment (class 100, +/-1ºF) and to support the process equipment and the specialized research done there.

This project will: 1) remove and salvage the existing TIMS and its appurtenances from laboratory 307C, 2) relocate the existing MC ICP-MS and its appurtenances from laboratory 308B to laboratory 307C, 3) replace the exhaust fans serving the Radiogenic Isotopes Labs with new fans and exhaust stacks, 4) replace the lab Makeup Air Handler (MAH) components necessary to achieve design cooling and heating capacity, airflows and pressurization and to meet modern refrigerant use standards as well as the strict micro contamination requirements of the laboratory, and 5) upgrade the existing controls system to modern digital controls standards for control of the lab HVAC.

PROJECT RATIONALE:

The UNM Radiogenic Isotopes Labs were founded, and are directed by Dr. Yemane Asmerom, a distinguished professor of isotope geochemistry in the UNM Department of Earth & Planetary Sciences. Over the last decade, Dr. Asmerom has been part of the leading edge in the technical, conceptual, and applied developments in uranium-series isotope geochemistry.

The research done in the Radiogenic Isotopes Labs requires that the MC ICP-MS be relocated adjacent to the clean lab. The HVAC system serving the clean lab areas, although highly specialized and well-constructed, does not have the thermal or airflow capacities to support the equipment and lab pressurization requirements. The refrigeration system serving the Tisdale Makeup Air Handler is based on the refrigerant R-22, the production or importation of which has been banned in the US by the EPA as of January 1, 2020. The HVAC controls system, although
Direct-Digital-Control (DDC) -based, is outdated and will require upgrades to control the new HVAC system/components.

FUNDING:
The total estimated Project Budget is $375,000:

- $375,000 is funded from 2021 Severance Tax Bonds
PART 2 - PRODUCTS

1. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.

2. Lighting control systems 4

4. Colorado Department of Health "Rules and Regulations Governing Construction." (See the above required indoctrination. Fully explain the contents of the manuals as part of required indoctrination and instruct the Owner's personnel in the correct procedure in obtaining service, both during and after construction.)

5. In acceptance or rejection of installed electrical systems, no allowance will be made for lack of skill on the part of the installers.

6. At completion of the work, the Contractor shall demonstrate the operation of all electrical equipment to the satisfaction of the Owner.

7. All specialties shall be installed as detailed on the drawings. Where detail or specific installation requirements are not provided, the extent, source, and description of these items will be as indicated on the drawings or as described in the specification.

8. Where these specifications are not shown or are not shown in sufficient detail, the Contractor shall request full drawings and specifications so that work may be performed properly.

9. Materials and equipment not listed are considered substitutions.

10. Building inspectors must be informed of any changes on other contractors and acknowledge the inclusion of additional costs to the other trades. If any such alternates are considered, the Contractor shall notify the Architect and the Owner.

11. No progress payments shall be made to any Contractor unless satisfactory progress has been made and the invoices submitted for payment are in order.

12. All Contractor's equipment and materials shall be removed from the premises and from the Contractor's subcontractors' and suppliers' properties immediately upon completion of the work.

13. The Contractor shall be responsible for all materials and equipment used in connection with the work and the Contractor shall furnish bills of material and shop drawings to the Architect for review.

14. Acceptance Demonstration: Upon completion of the work, at a time to be designated by the Architect, the Contractor shall demonstrate for the Owner the operation of all electrical systems.

15. Upon completion of the work, the Contractor shall provide the Architect with a certificate of warranty and a list of all equipment furnished by the Contractor, including the model number, serial number, and manufacturer.

16. A. Install insulated equipment grounding conductors with all feeders and branch circuits.

B. Store materials and equipment for easy inspection and checking.

C. The Contractor shall mark all record drawings on the front lower right hand corner with a stamp impression that reads 'RECORD DRAWINGS' or similar.

D. Where reduced voltage, multiple speed, duplex, triplex, lead-lag, pony motor and other unusual controller types are utilized, coordinate specific requirements of equipment with the Owner.

E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours wherever possible.

F. Acceptance Demonstration: Upon completion of the work, at a time to be designated by the Architect, the Contractor shall demonstrate for the Owner the operation of all electrical systems.

17. A. Raceways penetrating roofs shall be installed in a manner to preserve the integrity of the roof. Provide flashing and counter flashing for all roof penetrations required.

B. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.

C. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

E. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

F. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

G. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

H. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

I. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

J. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

K. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

L. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

M. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

N. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

O. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

P. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

Q. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

R. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

S. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

T. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

U. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

V. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

W. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

X. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

Y. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.

Z. Test completed grounding system at each location where a maximum ground-resistance level is specified, at service disconnect enclosure grounding terminal, at each main panelboard, at transformer and substation grounding terminals and at any equipment for which grounding is required, using the test equipment specified in the drawings and specifications.
A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

2.2 NONFUSIBLE SWITCHES

3. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

4. Square D; by Schneider Electric.

5. Instruction signs.

E. Accessories:

D. Circuit breakers shall have a toggle operating mechanism with common tripping of all poles, which provides quick-make, quick-break contact action. The circuit-breaker required for application.

J. Features and Accessories:

1. Polyester Tags: 0.010 inch (0.25 mm) thick, with corrosion-resistant grommet and cable tie for attachment to raceway, conductor, or cable.

2. Marker for Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

6. Listed and Approved by Underwriters Laboratories, Inc. (UL).

7. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes piping.

8. Instruction signs.

9. Comply with NFPA 70 and NECA 1.

10. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, lighting poles, and similar structures.

11. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

13. FMC: Comply with UL 1; aluminum.

14. Value shall be no less than two megohms.

15. Square D; by Schneider Electric.

16. Verifying that the installation is correct. Any errors shall be corrected.

18. Repairing and maintaining electrical and electronic equipment as required by the Electrical Code.

19. Comply with NFPA 70 and NECA 1.

20. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, lighting poles, and similar structures.

21. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

23. FMC: Comply with UL 1; aluminum.

24. Value shall be no less than two megohms.

25. Square D; by Schneider Electric.

26. Verifying that the installation is correct. Any errors shall be corrected.

28. Repairing and maintaining electrical and electronic equipment as required by the Electrical Code.

29. Comply with NFPA 70 and NECA 1.

30. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, lighting poles, and similar structures.

31. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

33. FMC: Comply with UL 1; aluminum.

34. Value shall be no less than two megohms.

35. Square D; by Schneider Electric.

36. Verifying that the installation is correct. Any errors shall be corrected.

38. Repairing and maintaining electrical and electronic equipment as required by the Electrical Code.

39. Comply with NFPA 70 and NECA 1.

40. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, lighting poles, and similar structures.

41. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

43. FMC: Comply with UL 1; aluminum.

44. Value shall be no less than two megohms.

45. Square D; by Schneider Electric.

46. Verifying that the installation is correct. Any errors shall be corrected.

48. Repairing and maintaining electrical and electronic equipment as required by the Electrical Code.

49. Comply with NFPA 70 and NECA 1.

50. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, lighting poles, and similar structures.

51. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.

53. FMC: Comply with UL 1; aluminum.

54. Value shall be no less than two megohms.

55. Square D; by Schneider Electric.

56. Verifying that the installation is correct. Any errors shall be corrected.

58. Repairing and maintaining electrical and electronic equipment as required by the Electrical Code.

59. Comply with NFPA 70 and NECA 1.

60. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches (1830 mm) of flexible conduit for recessed and semirecessed luminaires, lighting poles, and similar structures.

61. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
1. REMOVE EXISTING DISCONNECT AND ASSOCIATED CIRCUIT, WIRING, AND CONDUIT BACK TO SOURCE. RETAIN EXISTING DISCONNECT SWITCH FOR REUSE.

2. DISCONNECT 'TIMS' UNIT, PULL EXISTING FEEDER BACK TO PANEL OR LOCATION WHERE IT COULD BE EXTENDED TO NEW 'TIMS' UNIT LOCATION.

FLAG NOTES:

SCALE: 1/8" = 1'-0"

ELECTRICAL 3RD FLOOR DEMOLITION PLAN

KEYPLAN

A. ELECTRICAL CONTRACTOR TO FIELD VERIFY ALL EXISTING ELECTRICAL DEVICES THAT PERTAIN TO THIS PROJECT. PROVIDE A REASONABLE ALLOWANCE FOR ITEMS REQUIRED TO BE DEMOLISHED THAT ARE NOT INDICATED ON THESE PLANS.

B. CONTRACTOR SHALL PATCH, PAINT AND REPAIR BACK TO ORIGINAL CONDITION ANY DAMAGE ON WALLS, CEILINGS, FLOOR, ETC AS RESULT OF DEMOLITION.

C. ALL LIGHTS, SWITCHES, DEVICES, ETC. INDICATED ARE TO BE REMOVED UNLESS NOTED OTHERWISE.

D. CONTRACTOR SHALL MAINTAIN CIRCUIT CONTINUITY FOR ANY ELECTRICAL DEVICES TO REMAIN.

E. ANY EXISTING DEVICES TO REMAIN IN PLACE SHALL BE REPLACED WITH NEW WHITE DEVICE AND COVER PLATE.
1. DISCONNECT AIR HANDLING UNIT. REMOVE ASSOCIATED WIRING. RE-LABEL CIRCUIT AS "SPARE" IN PANEL. EXISTING CONDUIT MAY REMAIN FOR REUSE.

2. DISCONNECT CONDENSING UNIT. REMOVE ASSOCIATED WIRING AND CONDUIT BACK TO SOURCE. LABEL CIRCUIT AS "SPARE" AND TURN BREAKERS OFF.

3. REMOVE COMBINATION STARTER AND DISCONNECT EXHAUST FAN. RETAIN CONDUIT AND WIRING FOR REUSE FOR NEW UNIT.

4. REMOVE DUCT DETECTOR. FIELD VERIFY LOCATION. REMOVE CONDUIT AND WIRING BETWEEN ROOFTOP UNIT AND EXHAUST FANS AND REMOVE CONTROL WIRING.

5. DISCONNECT 120V CIRCUIT SERVING RECEPTACLES AND LIGHTING INSIDE AIR HANDLING UNIT. RETAIN HOMERUN CONDUIT AND WIRING IN PLACE FOR REUSE.

FLAG NOTES:

A. ELECTRICAL CONTRACTOR TO FIELD VERIFY ALL EXISTING ELECTRICAL DEVICES THAT PERTAIN TO THIS PROJECT. PROVIDE A REASONABLE ALLOWANCE FOR ITEMS REQUIRED TO BE DEMOLISHED THAT ARE NOT INDICATED ON THESE PLANS.

B. CONTRACTOR SHALL PATCH, PAINT AND REPAIR BACK TO ORIGINAL CONDITION ANY DAMAGE ON WALLS, CEILINGS, FLOOR, ETC AS RESULT OF DEMOLITION.

C. ALL LIGHTS, SWITCHES, DEVICES, ETC. INDICATED ARE TO BE REMOVED UNLESS NOTED OTHERWISE.

D. CONTRACTOR SHALL MAINTAIN CIRCUIT CONTINUITY FOR ANY ELECTRICAL DEVICES TO REMAIN.

E. ANY EXISTING DEVICES TO REMAIN IN PLACE SHALL BE REPLACED WITH NEW WHITE DEVICE AND COVER PLATE.
1. ALL CONDUIT, BOXES, FITTINGS IN THIS ROOM INCLUDING ABOVE CEILING SHALL BE PVC. PVC SCREWS SHALL BE USED TO SECURE CONDUIT, BOXES AND FITTINGS. NO METAL IS ALLOWED.

2. PROVIDE BOX AT 54" AFF AND CONDUIT FOR STUBBED ABOVE CEILING FOR T-STAT PROVIDED BY MECHANICAL.

3. CONNECT RELOCATED 'TIMS' UNIT. EXTEND 20A (3WG) FROM EXISTING 20A,2P CIRCUIT BREAKER IN PANEL SP1.

4. INSTALL DISCONNECT RETAINED DURING DEMOLITION. PROVIDE 40A (4WG), BACK TO 40A,3P CIRCUIT BREAKER IN PANEL SP1-2,4,6. FEEDER SHALL BE IN LFMC FROM LOAD SIDE OF DISCONNECT TO RELOCATED POWER CONDITIONER.

5. INSTALL DISCONNECT RETAINED DURING DEMOLITION. PROVIDE 50A (4WG), (4)#6 AND #10G IN 3/4"C, BACK TO 50A,3P CIRCUIT BREAKER IN PANEL SP1-1,3,5. FEEDER SHALL BE IN LFMC FROM LOAD SIDE OF DISCONNECT TO RELOCATED UPS.

6. REFER TO MECHANICAL PLANS FOR NEW EQUIPMENT CONNECTIONS.

NOTES:

A. ALL WIRING SHALL BE #12 AWG UNLESS NOTED OTHERWISE.

B. ALL NEW CIRCUITS ARE SHOWN IN BOLD IN PANEL SCHEDULE. ALL EXISTING CIRCUITS ARE SHOWN FOR REFERENCE ONLY. CONTRACTOR TO FIELD VERIFY.

C. REFER TO MECHANICAL PLANS FOR NEW EQUIPMENT CONNECTIONS.
1. PROVIDE RECEPTACLE AND DATA OUTLET FOR HVAC CONTROL CABINET. REFER TO MECHANICAL FOR LOCATION. EXTEND 120V POWER FROM NEAREST SOURCE, VERIFY CONNECTED LOAD DOES NOT EXCEED 16A. EXTEND DATA CABLE FROM NEAREST IDF ROOM. COORDINATE LOCATION AND CABLING REQUIREMENTS WITH CAMPUS IT.

2. RECONNECT EXISTING WIRING AND CONDUIT RETAINED DURING DEMOLITION TO NEW EXHAUST FANS.

3. EXTEND 20A,3P BRANCH CIRCUIT FROM EF-3 TO NEW EF-1.

4. CONNECT INTERIOR LIGHTING, PREWIRED FROM FACTORY, TO 120V BRANCH CIRCUIT RETAINED DURING DEMOLITION.

5. EXTEND 120V BRANCH CIRCUIT SERVING AHU-1 LIGHTING TO SERVICE RECEPTACLE BUILT-IN TO CU-1.

FLAG NOTES:

A. ALL WIRING SHALL BE #12 AWG UNLESS NOTED OTHERWISE.

B. ALL NEW CIRCUITS ARE SHOWN IN BOLD IN PANEL SCHEDULE. ALL EXISTING CIRCUITS ARE SHOWN FOR REFERENCE ONLY. CONTRACTOR TO FIELD VERIFY.

C. REFER TO MECHANICAL PLANS FOR NEW EQUIPMENT CONNECTIONS.
Mechanical Systems Legend

Piping Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>💧</td>
<td>Air Supply</td>
</tr>
<tr>
<td>💦</td>
<td>Air Return</td>
</tr>
<tr>
<td>🌡️</td>
<td>Cooling Coil</td>
</tr>
<tr>
<td>🌋</td>
<td>Chilled Water Supply</td>
</tr>
<tr>
<td>🌋</td>
<td>Chilled Water Return</td>
</tr>
<tr>
<td>🌋</td>
<td>Heating Water Supply</td>
</tr>
<tr>
<td>🌋</td>
<td>Heating Water Return</td>
</tr>
<tr>
<td>🌋</td>
<td>Steam Supply</td>
</tr>
<tr>
<td>🌋</td>
<td>Steam Return</td>
</tr>
<tr>
<td>🌋</td>
<td>Condenser Supply</td>
</tr>
<tr>
<td>🌋</td>
<td>Condenser Return</td>
</tr>
<tr>
<td>🌋</td>
<td>Domestic Water Supply</td>
</tr>
<tr>
<td>🌋</td>
<td>Domestic Water Return</td>
</tr>
<tr>
<td>🌋</td>
<td>Domestic Hot Water Supply</td>
</tr>
<tr>
<td>🌋</td>
<td>Domestic Hot Water Return</td>
</tr>
<tr>
<td>🌋</td>
<td>Glycol Feed</td>
</tr>
<tr>
<td>🌋</td>
<td>Glycol Return</td>
</tr>
<tr>
<td>🌋</td>
<td>Steam Condensate Return</td>
</tr>
<tr>
<td>🌋</td>
<td>Steam Condensate Supply</td>
</tr>
</tbody>
</table>

Equipment Abbreviations

- **AFAF**: Air Handling Unit
- **BT**: Buffer Tank
- **C**: Cabinet Unit Heater
- **CW**: Chilled Water Pump
- **DE**: Dishwasher Exhaust Fan
- **EH**: Exhaust Fan
- **FT**: Fan Coil
- **H**: Humidifier
- **ET**: Evaporative Cooler
- **B**: Makeup Air Unit
- **UH**: Unit Heater
- **GH**: Ground Heat Exchanger

Plan Symbols

- **C**: Butterfly Valve
- **P**: Plug Valve
- **G**: Gate Valve
- **T**: Tee
- **E**: Elbow
- **S**: Strainer
- **B**: Bypass
- **A**: Air Relief Valve
- **R**: Remote Control
- **V**: Vacuum Breaker
- **C**: Pressure Gauge
- **G**: Ground Loop
- **F**: Fire Damper

Piping Designations

- **CH**: Chilled Water
- **HW**: Heating Water
- **GWL**: Geothermal Loop Supply
- **GHR**: Geothermal Loop Return
- **HP**: High Pressure Steam
- **MP**: Medium Pressure Steam
- **LP**: Low Pressure Steam

Ductwork Legend

- **R**: Round Duct
- **S**: Single Duct
- **H**: Horizontal Line
- **V**: Vertical Line
- **X**: Cross Line

Air Device Designation Key

- **Type of Air Device**
- **Air Quantity (CFM)**
- **Design Pressure (W.C.)**
- **Operating Pressure (W.C.)**
- **Temperatures (°F)**
- **Fan Speed (RPM)**
- **Power (HP)**

Reference Sample

- **Duct Size**: First number is plan width, second number is module size. Refer to schedule for module size.
GENERAL NOTES (MECHANICAL SPECIFICATIONS)

1. DO NOT SCALE ENLARGEMENT, TRIM, DIMENSIONS OR PRINT PRIOR TO COMMENCEMENT OF WORK.
2. ALL SUBCONTRACTORS SHALL BE QUALIFIED, EXPERIENCED, AND PROFESSIONAL IN ACCORDANCE WITH THE REQUIREMENTS OF EACH TRADE.
3. THE CONTRACTOR SHALL coordination with the Architect, Owner, and other Trade Contractors prior to the issuance of the Final Punch List.
4. EXAMINATION OF BIDDING DOCUMENTS.
 a. The Contractor shall be responsible for defects, omissions, inconsistencies, or errors not made by the Contractor in the Final Construction Documents.
 b. The Contractor shall examine all plans and specifications, and shall notify the Architect of any discrepancies or conflicts in the plans and specifications.
5. CONDITIONED AIR SYSTEMS shall be coordinated with the Architect, Owner, and other Trade Contractors prior to the issuance of the Final Punch List.
6. HANGERS. VAPOR BARRIERS SHALL BE CONTINUOUS, AND SEALED RESPONSIBLY MANNER WITH ESTABLISHED CONSTRUCTION SEQUENCE, SHALL RECOGNIZE THE MASTIC.
7. INSULATION THICKNESS BELOW BASED ON INSULATION CONDUCTIVITY VALUE NOT EXCEEDING 0.27.
8. SUBMITTALS SHALL INCLUDE, BUT NOT BE LIMITED TO: EQUIPMENT, FIXTURES, INSULATION, DISCREPANCIES OR CONFLICTS IN THE CONSTRUCTION DOCUMENTS FOUND DURING BIDDING.
9. FAILURE TO ORDER, OR RELEASE ORDER FOR MATERIALS AND/OR EQUIPMENT WILL NOT BE ACCEPTED.
10. EXAMINATION OF BIDDING DOCUMENTS.
 a. The Contractor shall be responsible for defects, omissions, inconsistencies, or errors not made by the Contractor in the Final Construction Documents.
 b. The Contractor shall examine all plans and specifications, and shall notify the Architect of any discrepancies or conflicts in the plans and specifications.
11. CONDITIONED AIR SYSTEMS shall be coordinated with the Architect, Owner, and other Trade Contractors prior to the issuance of the Final Punch List.
12. HANGERS. VAPOR BARRIERS SHALL BE CONTINUOUS, AND SEALED RESPONSIBLY MANNER WITH ESTABLISHED CONSTRUCTION SEQUENCE, SHALL RECOGNIZE THE MASTIC.
13. INSULATION THICKNESS BELOW BASED ON INSULATION CONDUCTIVITY VALUE NOT EXCEEDING 0.27.
14. SUBMITTALS SHALL INCLUDE, BUT NOT BE LIMITED TO: EQUIPMENT, FIXTURES, INSULATION, DISCREPANCIES OR CONFLICTS IN THE CONSTRUCTION DOCUMENTS FOUND DURING BIDDING.
15. FAILURE TO ORDER, OR RELEASE ORDER FOR MATERIALS AND/OR EQUIPMENT WILL NOT BE ACCEPTED.
A. BASIS OF DESIGN IS MUNTERS, OR EQUAL. EQUAL INDICATES THAT ALL CAPACITIES, DIMENSIONS, WEIGHTS, MATERIALS, AND PERFORMANCE CRITERIA ARE EQUAL OR BETTER THAN BASIS OF DESIGN.

B. COIL BASES: SHALL BE OF THE MUNTERS DESIGN WITH EXTERNAL SHEATHING. SHEATHING SHALL BE OF 12 GAUGE STAINLESS STEEL WITH 2" BOLTING BRACKETS AND STIFFENERS OF 12-GAUGE. CURB SHALL BE INSULATED WITH 2" MINERAL INULATED SHEETING ON BOTH SIDES OF CURB.

D. ALL COILS OVER 42 INCHES IN LENGTH SHALL INCORPORATE A 16 GAUGE GALVANIZED TUBE SUPPORT IN THE CENTER OF THE FIN LENGTH; COILS OVER 96 INCHES IN FIN LENGTH SHALL INCORPORATE A 16 GAUGE GALVANIZED TUBE SUPPORT AT THE CENTER OF THE FIN LENGTH;

E. FLOORS: FLOORS SHALL BE CONSTRUCTED OF SEAM WELDED 16 GA STAINLESS STEEL WITH 2" BOLTING BRACKETS AND STIFFENERS OF 12-GAUGE. CURB SHALL BE INSULATED WITH 2" MINERAL INSULATED SHEETING ON BOTH SIDES OF CURB.

G. HOODS: FOR OUTDOOR UNITS, INTAKE HOODS SHALL BE PROVIDED. OPENING SHALL BE COVERED WITH A 24" X 24" LATTICE SCREEN WITH STAINLESS STEEL END PLATES AND A 2" BOLTING BRACKETS AND STIFFENERS OF 12-GAUGE. CURB SHALL BE INSULATED WITH 2" MINERAL INSULATED SHEETING ON BOTH SIDES OF CURB.

H. FRAMES: SHEATHING SHALL BE OF 12 GAUGE STAINLESS STEEL WITH 2" BOLTING BRACKETS AND STIFFENERS OF 12-GAUGE. CURB SHEATHING SHALL BE OF MINERAL INSULATED SHEETING ON BOTH SIDES OF CURB.
1. REMOVE EXISTING PVC DUCT WORK AND RISER AS SHOWN. REFER TO MD-104 FOR CONTINUATION.
2. REMOVE 4" EXHAUST DUCT CONNECTED TO EQUIPMENT. CAP RUN OUT AT MAIN EXHAUST DUCT.
3. REMOVE EXISTING DIFFERENTIAL PRESSURE SENSORS, ASSOCIATED WIRING, AND ACCESSORIES.
4. LOCATE COMPRESSED AIR CONNECTION TO EQUIPMENT AND REMOVE COMPRESSED AIR PIPING BACK TO MAIN. PROVIDE A VALVE AND CAP AT MAIN FOR POSSIBLE FUTURE CONNECTION.
5. EXISTING CHILLER TO REMAIN. REMOVE FLEXIBLE CHILLED WATER LINES BETWEEN CHILLER AND MASS SPECTROMETER.
6. REMOVE CONTROL PANEL AND ACCESSORIES COMPLETELY.
7. REMOVE 16"x16" DUCT RISER COMPLETELY.
8. REMOVE PIPING CONNECTING ARGON TANK TO MASS SPECTROMETER.

FLAG NOTES:
1. ADDITIONAL STORM, HYDRONIC, DOMESTIC, WASTE AND VENT PIPING MAY BE ROUTED IN SPACE THAT IS NOT REPRESENTED, BUT IS TO REMAIN. OTHER SYSTEMS MAY EXIST WITHIN THE SPACE THAT ARE NOT REPRESENTED ON THESE DRAWINGS; MODIFICATIONS TO THESE SYSTEMS ARE NOT ANTICIPATED.
2. FIELD VERIFY ALL COMPONENTS PRIOR TO DEMOLITION. THE INFORMATION ON THIS SHEET WAS OBTAINED, IN PART, FROM HISTORIC DESIGN DRAWINGS. ONLY PORTIONS OF THE SYSTEMS WERE ACCESSIBLE FOR VISUAL CONFIRMATION DURING DESIGN PROCESS.
3. PROVIDE PRELIMINARY TESTING OF EXISTING HYDRONIC SYSTEMS. MEASURE CURRENT FLUID FLOW RATE THROUGH ALL EXISTING COILS, RADIANT, AND SNOWMELT ZONES FOR THE CURRENTLY INSTALLED SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
4. PROVIDE PRELIMINARY TESTING OF EXISTING HVAC DUCTWORK SYSTEMS. MEASURE CURRENT AIRFLOW RATES AT ALL EXISTING SUPPLY, RETURN, AND EXHAUST REGISTERS. MEASURE TOTAL AIR FLOWS AT MAIN DUCT BRANCHES AND ALL FAN SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
5. REMOVE ALL MECHANICAL, ELECTRICAL, AND FIRE PROTECTION PIPING THAT IS NOT TO REMAIN.
6. FIELD VERIFY ALL COMPONENTS PRIOR TO DEMOLITION. THE INFORMATION ON THIS SHEET WAS OBTAINED, IN PART, FROM HISTORIC DESIGN DRAWINGS. ONLY PORTIONS OF THE SYSTEMS WERE ACCESSIBLE FOR VISUAL CONFIRMATION DURING DESIGN PROCESS.
7. PROVIDE PRELIMINARY TESTING OF EXISTING HYDRONIC SYSTEMS. MEASURE CURRENT FLUID FLOW RATE THROUGH ALL EXISTING COILS, RADIANT, AND SNOWMELT ZONES FOR THE CURRENTLY INSTALLED SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
8. PROVIDE PRELIMINARY TESTING OF EXISTING HVAC DUCTWORK SYSTEMS. MEASURE CURRENT AIRFLOW RATES AT ALL EXISTING SUPPLY, RETURN, AND EXHAUST REGISTERS. MEASURE TOTAL AIR FLOWS AT MAIN DUCT BRANCHES AND ALL FAN SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
9. (E) WASTE SYSTEM SERVING SPACE IS LOCATED IN THE CEILING OF THE SPACE BELOW.
10. REMOVE ALL MECHANICAL, ELECTRICAL, AND FIRE PROTECTION PIPING THAT IS NOT TO REMAIN.
11. FIELD VERIFY ALL COMPONENTS PRIOR TO DEMOLITION. THE INFORMATION ON THIS SHEET WAS OBTAINED, IN PART, FROM HISTORIC DESIGN DRAWINGS. ONLY PORTIONS OF THE SYSTEMS WERE ACCESSIBLE FOR VISUAL CONFIRMATION DURING DESIGN PROCESS.
12. PROVIDE PRELIMINARY TESTING OF EXISTING HYDRONIC SYSTEMS. MEASURE CURRENT FLUID FLOW RATE THROUGH ALL EXISTING COILS, RADIANT, AND SNOWMELT ZONES FOR THE CURRENTLY INSTALLED SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
13. PROVIDE PRELIMINARY TESTING OF EXISTING HVAC DUCTWORK SYSTEMS. MEASURE CURRENT AIRFLOW RATES AT ALL EXISTING SUPPLY, RETURN, AND EXHAUST REGISTERS. MEASURE TOTAL AIR FLOWS AT MAIN DUCT BRANCHES AND ALL FAN SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
14. REMOVE ALL MECHANICAL, ELECTRICAL, AND FIRE PROTECTION PIPING THAT IS NOT TO REMAIN.
15. FIELD VERIFY ALL COMPONENTS PRIOR TO DEMOLITION. THE INFORMATION ON THIS SHEET WAS OBTAINED, IN PART, FROM HISTORIC DESIGN DRAWINGS. ONLY PORTIONS OF THE SYSTEMS WERE ACCESSIBLE FOR VISUAL CONFIRMATION DURING DESIGN PROCESS.
16. PROVIDE PRELIMINARY TESTING OF EXISTING HYDRONIC SYSTEMS. MEASURE CURRENT FLUID FLOW RATE THROUGH ALL EXISTING COILS, RADIANT, AND SNOWMELT ZONES FOR THE CURRENTLY INSTALLED SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
17. PROVIDE PRELIMINARY TESTING OF EXISTING HVAC DUCTWORK SYSTEMS. MEASURE CURRENT AIRFLOW RATES AT ALL EXISTING SUPPLY, RETURN, AND EXHAUST REGISTERS. MEASURE TOTAL AIR FLOWS AT MAIN DUCT BRANCHES AND ALL FAN SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
18. REMOVE ALL MECHANICAL, ELECTRICAL, AND FIRE PROTECTION PIPING THAT IS NOT TO REMAIN.
19. FIELD VERIFY ALL COMPONENTS PRIOR TO DEMOLITION. THE INFORMATION ON THIS SHEET WAS OBTAINED, IN PART, FROM HISTORIC DESIGN DRAWINGS. ONLY PORTIONS OF THE SYSTEMS WERE ACCESSIBLE FOR VISUAL CONFIRMATION DURING DESIGN PROCESS.
20. PROVIDE PRELIMINARY TESTING OF EXISTING HYDRONIC SYSTEMS. MEASURE CURRENT FLUID FLOW RATE THROUGH ALL EXISTING COILS, RADIANT, AND SNOWMELT ZONES FOR THE CURRENTLY INSTALLED SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
21. PROVIDE PRELIMINARY TESTING OF EXISTING HVAC DUCTWORK SYSTEMS. MEASURE CURRENT AIRFLOW RATES AT ALL EXISTING SUPPLY, RETURN, AND EXHAUST REGISTERS. MEASURE TOTAL AIR FLOWS AT MAIN DUCT BRANCHES AND ALL FAN SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
22. REMOVE ALL MECHANICAL, ELECTRICAL, AND FIRE PROTECTION PIPING THAT IS NOT TO REMAIN.
23. FIELD VERIFY ALL COMPONENTS PRIOR TO DEMOLITION. THE INFORMATION ON THIS SHEET WAS OBTAINED, IN PART, FROM HISTORIC DESIGN DRAWINGS. ONLY PORTIONS OF THE SYSTEMS WERE ACCESSIBLE FOR VISUAL CONFIRMATION DURING DESIGN PROCESS.
24. PROVIDE PRELIMINARY TESTING OF EXISTING HYDRONIC SYSTEMS. MEASURE CURRENT FLUID FLOW RATE THROUGH ALL EXISTING COILS, RADIANT, AND SNOWMELT ZONES FOR THE CURRENTLY INSTALLED SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
25. PROVIDE PRELIMINARY TESTING OF EXISTING HVAC DUCTWORK SYSTEMS. MEASURE CURRENT AIRFLOW RATES AT ALL EXISTING SUPPLY, RETURN, AND EXHAUST REGISTERS. MEASURE TOTAL AIR FLOWS AT MAIN DUCT BRANCHES AND ALL FAN SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
26. REMOVE ALL MECHANICAL, ELECTRICAL, AND FIRE PROTECTION PIPING THAT IS NOT TO REMAIN.
27. FIELD VERIFY ALL COMPONENTS PRIOR TO DEMOLITION. THE INFORMATION ON THIS SHEET WAS OBTAINED, IN PART, FROM HISTORIC DESIGN DRAWINGS. ONLY PORTIONS OF THE SYSTEMS WERE ACCESSIBLE FOR VISUAL CONFIRMATION DURING DESIGN PROCESS.
28. PROVIDE PRELIMINARY TESTING OF EXISTING HYDRONIC SYSTEMS. MEASURE CURRENT FLUID FLOW RATE THROUGH ALL EXISTING COILS, RADIANT, AND SNOWMELT ZONES FOR THE CURRENTLY INSTALLED SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
29. PROVIDE PRELIMINARY TESTING OF EXISTING HVAC DUCTWORK SYSTEMS. MEASURE CURRENT AIRFLOW RATES AT ALL EXISTING SUPPLY, RETURN, AND EXHAUST REGISTERS. MEASURE TOTAL AIR FLOWS AT MAIN DUCT BRANCHES AND ALL FAN SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
30. REMOVE ALL MECHANICAL, ELECTRICAL, AND FIRE PROTECTION PIPING THAT IS NOT TO REMAIN.
31. FIELD VERIFY ALL COMPONENTS PRIOR TO DEMOLITION. THE INFORMATION ON THIS SHEET WAS OBTAINED, IN PART, FROM HISTORIC DESIGN DRAWINGS. ONLY PORTIONS OF THE SYSTEMS WERE ACCESSIBLE FOR VISUAL CONFIRMATION DURING DESIGN PROCESS.
32. PROVIDE PRELIMINARY TESTING OF EXISTING HYDRONIC SYSTEMS. MEASURE CURRENT FLUID FLOW RATE THROUGH ALL EXISTING COILS, RADIANT, AND SNOWMELT ZONES FOR THE CURRENTLY INSTALLED SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
33. PROVIDE PRELIMINARY TESTING OF EXISTING HVAC DUCTWORK SYSTEMS. MEASURE CURRENT AIRFLOW RATES AT ALL EXISTING SUPPLY, RETURN, AND EXHAUST REGISTERS. MEASURE TOTAL AIR FLOWS AT MAIN DUCT BRANCHES AND ALL FAN SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
34. REMOVE ALL MECHANICAL, ELECTRICAL, AND FIRE PROTECTION PIPING THAT IS NOT TO REMAIN.
35. FIELD VERIFY ALL COMPONENTS PRIOR TO DEMOLITION. THE INFORMATION ON THIS SHEET WAS OBTAINED, IN PART, FROM HISTORIC DESIGN DRAWINGS. ONLY PORTIONS OF THE SYSTEMS WERE ACCESSIBLE FOR VISUAL CONFIRMATION DURING DESIGN PROCESS.
1. REMOVE AIR HANDLING UNIT. DISCONNECT REFRIGERANT AND STEAM PIPING.
2. REMOVE CONDENSING UNITS AND ASSOCIATED REFRIGERANT PIPING.
3. REMOVE PVC RETURN DUCT AS SHOWN.
4. REMOVE PVC EXHAUST DUCT AS SHOWN.
5. REMOVE PVC SUPPLY DUCT AS SHOWN.
6. REMOVE FAN, STACK, AND ANY SUPPORTS.

FLAG NOTES:
1. SCALE: 1/8" = 1'-0"

MEMORANDUM

UNIVERSITY OF NEW MEXICO
NORTHROP HALL
221 YALE BLVD. N.E.

ALBUQUERQUE | AVON | DENVER | FORT COLLINS
303.278.3820 www.bgbuildingworks.com

© 2016 BG BUILDINGWORKS INC.

MECHANICAL ROOF PLAN

1. ADDITIONAL STORM, HYDRONIC, DOMESTIC, WASTE AND VENT PIPING MAY BE ROUTED IN SPACE THAT IS NOT REPRESENTED, BUT IS TO REMAIN. OTHER SYSTEMS MAY EXIST WITHIN THE SPACE THAT ARE NOT REPRESENTED ON THESE DRAWINGS; MODIFICATIONS TO THESE SYSTEMS ARE NOT ANTICIPATED.
2. FIELD VERIFY ALL COMPONENTS PRIOR TO DEMOLITION. THE INFORMATION ON THIS SHEET WAS OBTAINED, IN PART, FROM HISTORIC DESIGN DRAWINGS. ONLY PORTIONS OF THE SYSTEMS WERE ACCESSIBLE FOR VISUAL CONFIRMATION DURING DESIGN PROCESS.
3. PROVIDE PRELIMINARY TESTING OF EXISTING HYDRONIC SYSTEMS. MEASURE CURRENT FLUID FLOW RATE THROUGH ALL EXISTING COILS, RADIANT, AND SNOWMELT ZONES FOR THE CURRENTLY INSTALLED SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
4. PROVIDE PRELIMINARY TESTING OF EXISTING HVAC DUCTWORK SYSTEMS. MEASURE CURRENT AIR FLOW RATES AT ALL EXISTING SUPPLY, RETURN, AND EXHAUST REGISTERS. MEASURE TOTAL AIR FLOWS AT MAIN DUCT BRANCHES AND ALL FAN SYSTEMS. SUBMIT REPORT OF MEASURED VALUES TO ENGINEER FOR REVIEW AND CONFIRMATION OF SYSTEM DESIGN ASSUMPTIONS PRIOR TO DEMOLITION.
5. (E) WASTE SYSTEM SERVING SPACE IS LOCATED IN THE CEILING OF THE SPACE BELOW.
6. REMOVE ALL MECHANICAL ITEMS INDICATED.
7. TEMPORARILY SEAL OR CAP PIPING TO BE RE-USED FOR LATER CONNECTION.
8. SEAL ALL OPEN DUCTS DURING CONSTRUCTION TO MITIGATE DUST AND DEBRIS FROM SYSTEM. CAP DUCTWORK IN LOCATIONS THAT ARE NOT BEING RECONNECTED.
9. REMOVE ALL DEMOLISHED COLD WATER, HOT WATER AND HOT WATER RECIRCULATION PIPING BACK TO BRANCH FROM MAIN TO ELIMINATE ALL DEAD ENDS IN DOMESTIC WATER PIPING.
10. NOTIFY ENGINEER IMMEDIATELY OF ANY DISCREPANCIES OF INFORMATION REPRESENTED IN THE DOCUMENTS VERSUS WHAT IS FOUND IN THE FIELD.
11. COORDINATE PATCHING AND REPAIRS OF WALLS, CEILINGS AND FLOORS WITH ARCHITECT.
12. PATCH STRUCTURAL OPENINGS IN FLOORS, WALLS AND ROOFS THAT WERE PREVIOUSLY OCCUPIED BY SYSTEMS AND EQUIPMENT DEMOLISHED UNDER THIS CONTRACT IN ACCORDANCE WITH STRUCTURAL ENGINEER'S REQUIREMENTS.

DEMOLITION NOTES:
1. NOTIFY ENGINEER IMMEDIATELY OF ANY DISCREPANCIES OF INFORMATION REPRESENTED IN THE DOCUMENTS VERSUS WHAT IS FOUND IN THE FIELD.

MECHANICAL ROOF PLAN

S:
BGPROJECTS\9817.00 UNM NORTHROP HALL AIR HANDLER REPLACEMENT\DRAWINGS\9817MD104ROOFPLAN.DWG
09.28.17 9:57:08 AM

SCALE: As Shown
1. 10" STAINLESS STEEL EXHAUST DUCT TO EQUIPMENT. TRANSITION TO EQUIPMENT CONNECTION SIZE. BALANCE EXHAUST TO 415 CFM.
2. 10" STAINLESS STEEL EXHAUST DUCT TO EQUIPMENT. TRANSITION TO EQUIPMENT CONNECTION SIZE. BALANCE EXHAUST TO 300 CFM.
3. 6" STAINLESS STEEL EXHAUST DUCT TO EQUIPMENT. TRANSITION TO EQUIPMENT CONNECTION SIZE. BALANCE EXHAUST TO 70 CFM.
4. 16"x16" STAINLESS RISE THROUGH ROOF TO FAN ABOVE. INSTALL MAIN DUCT AS HIGH AS POSSIBLE.
5. 16"x16" STAINLESS RISE THROUGH ROOF TO AHU-1 ABOVE. INSTALL MAIN DUCT AS HIGH AS POSSIBLE.
6. 12X6 DUCT DROP DOWN TO GRILLE. INSTALL GRILLE 12" AFF.
7. SPACE DIFFERENTIAL PRESSURE SENSOR LOCATION. REFER TO M201, M701 AND M702 FOR MORE INFORMATION.

FLAG NOTES:
1. RE: M-501 FOR ROUND DUCT TAKE-OFF DIAGRAM.
2. RE: M-501 FOR 45° DUCT TAKE-OFF DIAGRAM.
3. COORDINATE ROUTING OF CONDENSATE DRAIN LINES PRIOR TO INSTALLATION.
4. CEILING COORDINATION OF ALL MEP SYSTEMS (LIGHTING, DUCTWORK, DIFFUSERS, ELECTRICAL, FIRE PROTECTION, ETC.) MUST BE COMPLETED BY THE CONTRACTOR PRIOR TO THE START OF ANY INSTALLATIONS.
5. AVOID ROUTING DUCTWORK OVER ELECTRICAL ROOMS OR ELECTRICAL PANELS; MAINTAIN N.E.C. CLEARANCES. COORDINATE ROUTINGS WITH DIV. 16 CONTRACTOR.
6. PROVIDE FLEXIBLE DUCT AND PIPE CONNECTIONS TO ALL MOTORIZED EQUIPMENT.
7. VERIFY ALL EQUIPMENT ACCESS PANELS WITH MANUFACTURER AND ARCHITECT.
8. SEAL ALL DUCT PENETRATIONS OF ACOUSTIC PARTITIONS.

HVAC NOTES:
1. REF. AS IS FOR ROUND DUCT TAKE-OFF DIAGRAM
2. REF. AS IS FOR 45° DUCT TAKE-OFF DIAGRAM
3. COORDINATE ROUTING OF CONDENSATE DRAIN LINES PRIOR TO INSTALLATION.
4. CEILING COORDINATION OF ALL MEP SYSTEMS (LIGHTING, DUCTWORK, DIFFUSERS, ELECTRICAL, FIRE PROTECTION, ETC.) MUST BE COMPLETED BY THE CONTRACTOR PRIOR TO THE START OF ANY INSTALLATIONS.
5. AVOID ROUTING DUCTWORK OVER ELECTRICAL ROOMS OR ELECTRICAL PANELS; MAINTAIN N.E.C. CLEARANCES. COORDINATE ROUTINGS WITH DIV. 16 CONTRACTOR.
6. PROVIDE FLEXIBLE DUCT AND PIPE CONNECTIONS TO ALL MOTORIZED EQUIPMENT.
7. VERIFY ALL EQUIPMENT ACCESS PANELS WITH MANUFACTURER AND ARCHITECT.
8. SEAL ALL DUCT PENETRATIONS OF ACOUSTIC PARTITIONS.
1. EXISTING THERMOFLEX TFL-5000 PROCESS CHILLER SERVING MASS SPECTROMETER. CONNECT (2) CIRCUITS OF CHS/CHR FLEXIBLE PIPING. FLEXIBLE PIPING FOR THE CHILLER SHALL BE PRE-INSULATED FLEXIBLE PVC PIPING FROM THERMOFLEX.

2. EXISTING LIQUID ARGON TANK SERVING MASS SPECTROMETER. CONNECT NEW 1/2" COPPER LINE TO TANK AND ROUTE PIPING UP WALL ABOVE CEILING TO EQUIPMENT.

3. FLEXIBLE PVC PIPING ABOVE CEILING. SUPPORT PIPING EVERY 5'-0".

4. CONNECT 3/4" COMPRESSED AIR LINE TO MAIN AT THIS LOCATION. PROVIDE ISOLATION VALVE.

5. 1/2" CA LINE ABOVE CEILING.

6. 1/2" ARGON LINE ABOVE CEILING.

7. TRANSITION TO EQUIPMENT CONNECTION SIZE AND CONNECT TO MASS SPECTROMETER WITH SWAGELOK CONNECTOR.

8. CONNECT FLEXIBLE PVC CHS/CHR LINE TO MASS SPECTROMETER. DROP PIPING IN A NEAT MANNER FROM CEILING TO EQUIPMENT.

9. CONNECT 1/2" CA PIPING TO EQUIPMENT. PROVIDE TRANSITIONS AND FITTINGS AS NEEDED FOR CONNECTION.

HVAC NOTES:
1. RE: M-501 FOR ROUND DUCT TAKE-OFF DIAGRAM.
2. RE: M-501 FOR 45° DUCT TAKE-OFF DIAGRAM.
3. COORDINATE ROUTING TO CONDENSATE DRAIN LINES PRIOR TO INSTALLATION.
4. CEILING COORDINATION OF ALL MEP SYSTEMS (LIGHTING, DUCTWORK, DIFFUSERS, ELECTRICAL, FIRE PROTECTION, ETC.) MUST BE COMPLETED BY THE CONTRACTOR PRIOR TO THE START OF ANY INSTALLATIONS.
5. AVOID ROUTING DUCTWORK OVER ELECTRICAL ROOMS OR ELECTRICAL PANELS; MAINTAIN N.E.C. CLEARANCES. COORDINATE ROUTINGS WITH DIV. 16 CONTRACTOR.
6. PROVIDE FLEXIBLE DUCT AND PIPE CONNECTIONS TO ALL MOTORIZED EQUIPMENT.
7. VERIFY ALL EQUIPMENT ACCESS PANELS WITH MANUFACTURER AND ARCHITECT.
8. SEAL ALL DUCT PENETRATIONS OF ACOUSTIC PARTITIONS.

FLAG NOTES:
1. EXISTING USE OF UNINSULATED PIPING IN DUCT/EQUIPMENT RUNS. INSULATION MUST BE ADDED TO DUCTS AND PIPES PRIOR TO INSTALLATION.
2. FLEXIBLE PVC PIPING ABOVE CEILING. SUPPORT PIPING EVERY 5'-0".
3. PROVIDE ISOLATION VALVE WHERE REQUIRED. PROVIDE ISOLATION VALVES ON SUPPLY AND RETURN TO ENSURE SEPARATE TRAVEL PATHWAYS.
4. 1/2" CA LINE ABOVE CEILING.
5. TRANSMIT TO OWNER CONNECTION SIZE AND TRANSITION TO ENSURE DUCTWORK AND FIRE PROTECTION ARE COMPLETE PRIOR TO INSTALLATION.
6. CONNECT UP TO Fixture TO Equipment. PROVIDE TRANSITIONS AND FITTINGS AS NEEDED FOR CONNECTION.
1. NEW AIR HANDLING UNIT ON NEW CURB. COORDINATE ROOF PATCHING WITH GENERAL CONTRACTOR.

2. NEW FRP UTILITY SET EXHAUST FAN ON EXISTING ROOF. PROVIDE THYCURB TEMS-1 EQUIPMENT RaILS AND COORDINATE ROOF PATCHING WITH GENERAL CONTRACTOR.

3. UTILITY SET FAN ON EQUIPMENT RAILS. COORDINATE ROOF PATCHING WITH GENERAL CONTRACTOR.

4. NEW CONDENSING UNIT ON THYCURB TEMS-1 EQUIPMENT RAILs. COORDINATE ROOF PATCHING WITH GENERAL CONTRACTOR.

5. PVC SUPPLY DUCT INSULATED AND JACKETED WITH EMBOSSED ALUMINUM JACKETING.

6. 12" ROUND PVC EXHAUST DUCT SUPPORTED ON ROOF.

7. 20" ROUND PVC EXHAUST DUCT DOWN THROUGH ROOF TO LAB BELOW.

8. 12" ROUND PVC EXHAUST DUCT DOWN THROUGH ROOF TO LAB BELOW.

9. 12"x10" EXHAUST DUCT DOWN THROUGH ROOF TO LAB BELOW.

10. 16"x16" STAINLESS STEEL EXHAUST DOWN THROUGH ROOF TO LAB BELOW.

11. SUPPORT REFRIGERANT LINES ON ROOF AND PROVIDE UV RESISTANT INSULATION ON PIPING. ROUTE 7/8" LIQUID, 1-5/8" SUCTION AND 7/8" HGBP LINES TO EACH CIRCUIT OF THE DX COIL.

12. CONNECT TO EXISTING 2-1/2" LOW PRESSURE STEAM LINE AT ROOF AND EXTEND TO THE STEAM COILS.

13. CONNECT TO EXISTING 2" CONDENSATE LINE AT ROOF. MAINTAIN SLOPE OF NEW LINES BACK TO THIS LOCATION.

14. CONNECT 2" STEAM LINE TO STEAM PRE-HEAT COIL. PROVIDE 2-WAY CONTROL VALVE INSTALLED INSIDE AIR HANDLER CABINET. CONNECT 2" CONDENSATE LINE FROM COIL AND SLOPE TO EXISTING LINE PENETRATING ROOF. PROVIDE F&T TRAP SIZED FOR DOUBLE THE SCHEDULED COIL CAPACITY.

15. CONNECT 2" STEAM LINE TO STEAM RE-HEAT COIL ZONE #2. PROVIDE 2-WAY CONTROL VALVE INSTALLED INSIDE AIR HANDLER CABINET. CONNECT 2" CONDENSATE LINE FROM COIL AND SLOPE TO EXISTING LINE PENETRATING ROOF. PROVIDE F&T TRAP SIZED FOR DOUBLE THE SCHEDULED COIL CAPACITY.

16. CONNECT 1-1/4" STEAM LINE TO STEAM RE-HEAT COIL ZONE #2. PROVIDE 2-WAY CONTROL VALVE INSTALLED INSIDE AIR HANDLER CABINET. CONNECT 1" CONDENSATE LINE FROM COIL AND SLOPE TO EXISTING LINE PENETRATING ROOF. PROVIDE F&T TRAP SIZED FOR DOUBLE THE SCHEDULED COIL CAPACITY.

17. STAINLESS STEEL SUPPLY DUCT INSULATED AND JACKETED WITH EMBOSSED ALUMINUM JACKETING.

18. PROVIDE 1" TYPE M COPPER CONDENSATE LINE FROM DRAIN PAN TO THE NEAREST ROOF DRAIN.

HVAC NOTES:

1. FOR ALL POST PRINTED DUCT, INSULATION, INSULATION SUPPORT USING 1/2" INSULATION TIES AND 1/2" STEEL HANGERS.

2. FOR ALL ROUND DUCT TAKE-OFF DIAGRAM.

3. FOR ALL 45° DUCT TAKE-OFF DIAGRAM.

4. FOR ALL CONDENSATE DRAIN LINES.

5. CEILING COORDINATION OF ALL MEP SYSTEMS (LIGHTING, DUCTWORK, DIFFUSERS, ELECTRICAL, FIRE PROTECTION, ETC.) MUST BE COMPLETED BY THE CONTRACTOR PRIOR TO THE START OF ANY INSTALLATIONS.

6. AVOID ROUTING DUCTWORK OVER ELECTRICAL ROOMS OR ELECTRICAL PANELS; MAINTAIN N.E.C. CLEARANCES. COORDINATE ROUTINGS WITH DIV. 16 CONTRACTOR.

7. PROVIDE FLEXIBLE DUCT AND PIPE CONNECTIONS TO ALL MOTORIZED EQUIPMENT.

8. VERIFY ALL EQUIPMENT ACCESS PANELS WITH MANUFACTURER AND ARCHITECT.

9. SEAL ALL DUCT PENETRATIONS OF ACOUSTIC PARTITIONS.

10. CONNECT TO EXISTING 2" LOW PRESSURE STEAM LINE AT ROOF. MAINTAIN SLOPE OF NEW LINES BACK TO THIS LOCATION.

11. PROVIDE 1" TYPE K COPPER DRAIN PAN CONNECTION TO THE NEAREST ROOF DRAIN.
THE HEATING COIL STEAM VALVE SHALL OPEN WHENEVER:

• HEATING SUPPLY AIR TEMPERATURE DROPS FROM 40°F TO 35°F (ADJ.).

RESET BASED ON ZONE COOLING REQUIREMENTS AS FOLLOWS:

• THE INITIAL COOLING SUPPLY AIR TEMPERATURE SETPOINT SHALL BE 90°F (ADJ.).

• AS COOLING DEMAND INCREASES, THE SETPOINT SHALL INCREMENTALLY RESET DOWN TO A MINIMUM OF 53°F (ADJ.).

• AS COOLING DEMAND DECREASES, THE SETPOINT SHALL INCREMENTALLY RESET UP TO A MAXIMUM OF 72°F (ADJ.).

COOLING STAGING:

THE CONTROLLER SHALL MONITOR THE COOLING SUPPLY AIR TEMPERATURE AND MODULATE THE DX COOLING VALVE TO MAINTAIN ITS SETPOINT.

THE CONTROLLER SHALL BE ENABLED EVERYWHERE.

OUTSIDE AIR TEMPERATURE IS LESS THAN 65°F (ADJ.).

• AND THE SUPPLY FAN STATUS IS ON.

THE PREHEATING COIL STEAM VALVE SHALL OPEN FOR FREEZE PROTECTION WHENEVER:

• OUTSIDE AIR TEMPERATURE IS LESS THAN 65°F (ADJ.).

• AND THE SUPPLY FAN STATUS IS ON.

THE UNIT SHALL STOP. THE DAMPERS SHALL CLOSE 5 SEC (ADJ.) AFTER THE SUPPLY FAN STOPS.

OUTSIDE AIR TEMPERATURE IS LESS THAN 55°F (ADJ.).

• AND THE SUPPLY FAN STATUS IS ON.

THE UNIT SHALL RUN CONTINUOUSLY AND SHALL MAINTAIN:

• HIGH HEATING SUPPLY AIR TEMP: IF THE HEATING SUPPLY AIR TEMPERATURE IS GREATER THAN 120°F (ADJ.).

• A 70°F (ADJ.) HEATING SETPOINT.

THE CONTROLLER SHALL MEASURE THE HEATING SUPPLY AIR TEMPERATURE AND MODULATE THE PREHEATING COIL STEAM VALVE TO MAINTAIN ITS SETPOINT.

THE CONTROLLER SHALL BE ENABLED EVERYWHERE.

OUTSIDE AIR TEMPERATURE IS LESS THAN 55°F (ADJ.).

• AND THE SUPPLY FAN STATUS IS ON.

THE UNIT SHALL SHUT DOWN AND GENERATE AN ALARM UPON RECEIVING A FREEZESTAT STATUS.

THE UNIT SHALL SHUT DOWN AND GENERATE AN ALARM UPON RECEIVING A SUPPLY FAN STATUS.

THE UNIT SHALL SHUT DOWN AND GENERATE AN ALARM UPON RECEIVING A SUPPLY FAN STATUS.

THE CONTROLLER SHALL MEASURE THE OUTSIDE AIR TEMPERATURE AND MODULATE THE DX COOLING VALVE TO MAINTAIN ITS SETPOINT.

THE CONTROLLER SHALL MEASURE THE OUTSIDE AIR TEMPERATURE AND MODULATE THE DX COOLING VALVE TO MAINTAIN ITS SETPOINT.

THE CONTROLLER SHALL MEASURE THE OUTSIDE AIR TEMPERATURE AND MODULATE THE DX COOLING VALVE TO MAINTAIN ITS SETPOINT.

THE CONTROLLER SHALL MEASURE THE OUTSIDE AIR TEMPERATURE AND MODULATE THE DX COOLING VALVE TO MAINTAIN ITS SETPOINT.

THE CONTROLLER SHALL MEASURE THE OUTSIDE AIR TEMPERATURE AND MODULATE THE DX COOLING VALVE TO MAINTAIN ITS SETPOINT.
SEQUECE OF OPERATION:

RUN CONDITIONS - SCHEDULED:
THE FAN SHALL RUN ACCORDING TO A USER DEFINABLE SCHEDULE.

FAN:
THE FAN SHALL HAVE A USER DEFINABLE (ADJ.) MINIMUM RUNTIME.

EXHAUST AIR DAMPER:
THE EXHAUST AIR DAMPER SHALL OPEN ANYTIME THE UNIT RUNS AND SHALL CLOSE ANYTIME THE UNIT STOPS. THE EXHAUST AIR DAMPER SHALL CLOSE 30 SEC (ADJ.) AFTER THE FAN STOPS.

ALARMS SHALL BE PROVIDED AS FOLLOWS:
• DAMPER FAILURE: COMMANDED OPEN, BUT THE STATUS IS CLOSED.
• DAMPER IN HAND: COMMANDED CLOSED, BUT THE STATUS IS OPEN.

FAN STATUS:
The controller shall monitor the fan status.

ALARMS SHALL BE PROVIDED AS FOLLOWS:
• FAN FAILURE: COMMANDED ON, BUT THE STATUS IS OFF.
• FAN IN HAND: COMMANDED OFF, BUT THE STATUS IS ON.
• FAN RUNTIME EXCEEDED: FAN RUNTIME EXCEEDS A USER DEFINABLE LIMIT (ADJ.).

SEQUENCE OF OPERATION:

Run conditions - scheduled:
The fan shall run according to a user definable schedule.

Fan:
The fan shall have a user definable (adj.) minimum runtime.

Exhaust air damper:
The exhaust air damper shall open anytime the unit runs and shall close anytime the unit stops. The exhaust air damper shall close 30 sec (adj.) after the fan stops.

Alarms shall be provided as follows:
- Damper failure: commanded open, but the status is closed.
- Damper in hand: commanded closed, but the status is open.

Fan status:
The controller shall monitor the fan status.

Alarms shall be provided as follows:
- Fan failure: commanded on, but the status is off.
- Fan in hand: commanded off, but the status is on.
- Fan runtime exceeded: fan runtime exceeds a user definable limit (adj.).
REQUEST FOR CAPITAL PROJECT CONSTRUCTION APPROVAL for
TAOS HARWOOD MUSEUM: HVAC IMPROVEMENTS
UNIVERSITY OF NEW MEXICO
March 8, 2022

REQUESTED ACTION:
In accordance with Section 7.12 of the Board of Regents Policy Manual and as required by the
New Mexico Higher Education Department and New Mexico State Board of Finance, project
approval is requested for Taos Harwood Museum: HVAC Improvements

PROJECT DESCRIPTION:
Replacement of RTU's identified as 3 and 4 are required and will include new electrical power
feed from the existing panel. This requires new conduit, new wire and new breakers within the
electrical panel. In addition, there may be structural modifications, reinforcement of the roof
deck, due to the new unit size and increased weight. Mechanical controls integration into the
existing system will be needed in order to operate the new units to include including
programming and commissioning of the units prior to start up.

PROJECT RATIONALE:
The Harwood Museum has 4 Roof Top Units (RTUs) that are approximately 23 years old and
need to be replaced. These systems are not up-to-date in their monitoring capability, and not
accessible for remote control. RTU-3 and RTU-4 are currently failing. RTU-3 is leaking and
mostly non-functioning and RTU-4 is only partially working. Both units are required to maintain
proper temperature and humidity requirements for the art exhibits.

If the project does not receive approval, the museum, the collections are at risk and the facility's
American Association of Museums accreditation is jeopardized due to not being able to meet the
indoor air requirements for temperature and humidity.

FUNDING:
The total estimated Project Budget is $350,000:

- $100,000 is funded from Legislative Capital Outlay FY22 Funding Granted
- $150,000 is funded from FY22 FIN Allocation
- $50,000 is funded from Harwood Museum Unrestricted Reserves from Individual Gifts
- $50,000 is funded from FY22 Emergency Reserves
REQUEST FOR CAPITAL PROJECT CONSTRUCTION APPROVAL for
BIOMEDICAL RESEARCH FACILITY (BRF) LABORATORY AIRFLOW SAFETY
MODIFICATIONS TO BSL-2 LABS 120-127
UNIVERSITY OF NEW MEXICO
March 08, 2022 REQUESTED ACTION:

In accordance with Section 7.12 of the Board of Regents Policy Manual and as required by the New Mexico Higher Education Department and New Mexico State Board of Finance, project approval is requested for Laboratory Airflow Safety Modifications to BSL-2 Labs 120-127 at the Biomedical Research Facility (BRF), on the Albuquerque North Campus.

PROJECT DESCRIPTION:

The Biomedical Research Facility (building 253) is 108,465 gsf and is composed primarily of research laboratories, with some administrative office spaces. Sealing of the Bio-Safety Level 2 (BSL-2) laboratories 120-127 and installing laboratory airflow controls will provide a safe Indoor Air Quality (IAQ) environment for research done in those labs. The remaining labs not covered in this project will be addressed in future projects.

PROJECT RATIONALE:

The Biomedical Research Facility was constructed in 1982 and comprises five levels: a basement, a ground level, and three upper floors containing primarily Bio-Safety Level 2 (BSL-2) laboratories for biomedical research. It was recently discovered that the laboratory levels have an open airflow path between the laboratories and other spaces on the same floor level (laboratories, corridors, offices, etc.). To isolate the laboratory processes and provide secondary containment, the perimeter walls of each lab must be continued above the ceiling up to the floor or roof above, and all penetrations through the walls must be sealed.

Once 120-127 laboratories have been properly sealed, standard laboratory airflow controls can be installed, including airflow valves and controls for primary containments (fume hoods, biosafety cabinets, etc.), room supply air and room general exhaust.

The combination of sealing each lab and installing airflow controls will provide a safe indoor air quality environment for the research performed in 120-127 labs. Additionally, isolating the laboratories will allow the building makeup air and exhaust systems to operate at a lower energy level, without struggling to maintain differential pressures between unsealed spaces.

If this project is not approved, the 120-127 laboratories would remain in their present state with the potential of exposure for building occupants to biological materials that would otherwise be contained within the laboratory and exhausted from the building. Building makeup air and exhaust systems will continue to operate at a higher-than-necessary energy level to maintain differential pressures.

FUNDING: The total estimated Project Budget is $565,000

- $565,000 is funded from FY22 Sustainability Surcharge
BIOMEDICAL RESEARCH FACILITY

UNIVERSITY OF NEW MEXICO SCHOOL OF MEDICINE

915 Camino De Salud NE | Building 253 - #A0253 | Albuquerque, NM 87131-3500

FACILITIES MANAGEMENT ENGINEERING & ENERGY SERVICES

Albuquerque, NM 87131-3500 | Phone: (505) 277-1126 | Fax: (505) 277-3561

FIRST FLOOR - BSL-2 LAB & INTERLAB

HVAC EXHAUST & SUPPLY AIR SYSTEMS

LAB 120, LAB 121, LAB 124, LAB 125 & LAB 127

INDEX OF DRAWINGS

LAB 120, LAB 121, LAB 124, LAB 125 & LAB 127

<table>
<thead>
<tr>
<th>GENERAL</th>
<th>SEQUENCE</th>
<th>SHEET NUMBER</th>
<th>LEVEL</th>
<th>SHEET TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>G-001</td>
<td></td>
<td></td>
<td>COVER SHEET</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ARCHITECTURAL</th>
<th>SEQUENCE</th>
<th>SHEET NUMBER</th>
<th>LEVEL</th>
<th>SHEET TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>A-101</td>
<td>1ST FLOOR</td>
<td></td>
<td>1ST FLOOR PARTIAL ARCHITECTURAL PLAN</td>
</tr>
<tr>
<td>03</td>
<td>A-201</td>
<td>1ST FLOOR</td>
<td></td>
<td>CEILING PLENUM - WALL PENETRATION PLAN</td>
</tr>
<tr>
<td>04</td>
<td>A-301</td>
<td>1ST FLOOR</td>
<td></td>
<td>INTERIOR PARTITION TYPE, FINISH SCHEDULE AND MISCELLANEOUS PHOTOS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MECHANICAL</th>
<th>SEQUENCE</th>
<th>SHEET NUMBER</th>
<th>LEVEL</th>
<th>SHEET TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>05</td>
<td>M-101</td>
<td>1ST FLOOR</td>
<td></td>
<td>MECHANICAL NEW WORK PLAN</td>
</tr>
<tr>
<td>07</td>
<td>M-501</td>
<td>-</td>
<td></td>
<td>TYPICAL PENETRATION DETAILS</td>
</tr>
<tr>
<td>09</td>
<td>M-801</td>
<td>-</td>
<td></td>
<td>B.A.S. BASED LABORATORY AIRFLOW SAFETY STANDARD CONTROLS DIAGRAM, LABORATORY HOOD EXHAUST - LAB ROOMS 121 AND 125</td>
</tr>
<tr>
<td>09</td>
<td>M-802</td>
<td>-</td>
<td></td>
<td>SEQUENCE OF OPERATION AND CONTROLS EQUIPMENT SCHEDULE</td>
</tr>
</tbody>
</table>

NOVEMBER 5, 2021

PROJECT SITE LOCATION

BUILDING 253

BUILDING 253

CAMPGEDGE PARKI

LOMAS BLVD
General Notes

A. **Contractor shall verify all conditions and dimensions at the job site.** If any discrepancies are found, the engineer of record shall be notified.

B. **Protect from damaging existing electrical, mechanical equipment, etc.** Which will remain as part of the final systems. If damaged, the contractor shall repair and/or restore these items to pre-construction conditions.

C. The contractor shall patch all walls in areas where miscellaneous fixtures, conduit, and devices have been removed.

D. Patch/Repair/Texture all walls for consistent finish free of defects & uneven surfaces.

E. **Contractor shall confirm adequate blocking support for all wall-hung items.** For wall-hung items in concrete walls, contractor shall confirm required anchoring with equipment manufacturer.

F. **All work shall conform to the requirements of the 2018 edition of the IBC, International Building Code and all other governing authorities having jurisdiction.**

G. **Contractor shall secure all necessary permits required by local authorities.**

H. **All testing and inspections shall be coordinated and scheduled by the contractor.**

I. **Contractor shall coordinate schedule date, site access with the user prior to commencing work.**

J. **Only major items of demolition are shown on the demolition drawings.** There may be specific and small items of demolition and repair that will be necessary throughout the course of the work which is apparent by a complete and thorough review of existing conditions and all of the construction documents. It is the contractor's responsibility to perform all demolition operations required for the project.

K. **Existing construction shall be modified as needed to accommodate new devices and conduit routes.** Such modifications will be performed and phased to match adjacent. All symbols and abbreviations used on drawings are considered to be construction standard. If the contractor has questions regarding same or their exact meaning, the engineer of record shall be notified for clarification.

L. **Contractor shall thoroughly clean all ceiling spaces in the project area to remove all dust deposits and debris.**

Symbol Legend

- Wall Type
- Point of Connection

Keyed Notes

1. Extend interior partition wall to bottom of structural deck.
2. Field verify mechanical chase wall extends to bottom of structural deck all around. Refer to interior partition assembly, type B.
4. Seal both sides of all wall penetrations with fine caulking. Typical. (Sheetrock shall be continuous around each space).

Scope of Work

1. 532 SQ FT
2. 504 SQ FT
3. 504 SQ FT
4. 504 SQ FT
5. 504 SQ FT

BIOMEDICAL RESEARCH FACILITY

HVAC EXHAUST & SUPPLY AIR SYSTEMS

FIRST FLOOR - BSL-2 LAB & INTERLAB

FACILITIES MANAGEMENT ENGINEERING & ENERGY SERVICES

UNIVERSITY OF NEW MEXICO SCHOOL OF MEDICINE

915 Camino De Salud NE | Building 253 - #A0253 | Albuquerque, NM 87131-3500
General Notes

A. PLANS ARE GRAPHIC REPRESENTATIONS. CONTACT BUILDING MANAGEMENT WITH ANY QUESTIONS REGARDING INTENT. ALL AREAS TO BE REMODELED REQUIRE FIELD VERIFICATION PRIOR TO PROJECT START.

B. CONTRACTOR TO COORDINATE ALL UTILITY SHUT DOWNS AND TIE-INS WITH THE OWNER.

C. LABORATORY SHALL BE ADEQUATELY SEALED TO MAINTAIN DIFFERENTIAL PRESSURE BETWEEN LABORATORY AND SURROUNDING SPACES.

Keyed Notes

1. REFER TO SYMBOL LEGEND FOR GENERAL DESCRIPTION OF PENETRATION TYPE. DUCT SIZES ARE NOT SHOWN ON PLAN. REFER TO SHEET A-301 WHERE MISCELLANEOUS PHOTOS ARE PROVIDED.

2. WALL PENETRATIONS SHOWN ON PLAN ARE CLOSE REPRESENTATION OF TYPE AND NUMBER OF DUCTS, CONDUITS, WIRES AND LOOSE COMM LINES THAT ROUTE BETWEEN ANTE-ROOM / INTERLAB, LABORATORY AND HALLWAY 104.

Symbol Legend

- **Conduit**
- **Loose Wires**
- **Duct**
- **Cast Iron / Pipe**
- **Flex Conduit**
- **Junction Box**

NOT TO SCALE

KEY PLAN - FIRST FLOOR
1. WALL BETWEEN INTERLAB 127 AND HALLWAY 104
2. WALL BETWEEN INTERLAB 125 AND LAB 125
3. WALL BETWEEN LAB 120 AND INTERLAB 121
4. WALL BETWEEN LAB 127 AND LAB 125
5. WALL BETWEEN LAB 120 AND LAB 130

NON-RATED, TYPICAL PARTITION

SEALANT
EXISTING 5/8" GYP. BOARD

EXISTING METAL STUD WALL AND 5/8" GYP BOARD

EXISTING CEILING TYPE AND CEILING HEIGHT

COMBINE ALL LOOSE COMBINES IN A SLEEVE OR CONDUIT FOR A CLEAN 'THRU WALL PENETRATION

EXTEND 3-5/8" METAL STUD TO TOP OF EXISTING METAL STUD AND FASTEN
EXTEND 5/8" GYP BOARD TO EXISTING GYP BOARD. ENSURE NO GAPS OCCUR IN BETWEEN

ATTACH DEFLECTION TRACK WITH ANCHORS @ 16" O.C.

SEAL ALL DUCT, CONDUIT, AND PIPE PENETRATIONS IN THE NEW WALL EXTENSIONS, BOTH SIDES, TYPICAL

EXISTING CEILING TYPE AND CEILING HEIGHT

EXISTING METAL STUD WALL AND 5/8" GYP BOARD

EXISTING CEILING TYPE AND CEILING HEIGHT

ATTACH DEFLECTION TRACK WITH ANCHORS @ 16" O.C.

SEALANT, BOTH SIDES
3-5/8" X 20 GA GALVANIZED METAL STUD TO BOTTOM OF DECK @ 16" O.C.
INSTALL 5/8" GYP BOARD EACH SIDE

EXISTING CEILING TYPE AND CEILING HEIGHT

EXISTING METAL STUD WALL AND 5/8" GYP BOARD

EXISTING CEILING TYPE AND CEILING HEIGHT

ATTACH DEFLECTION TRACK WITH ANCHORS @ 16" O.C.

SEALANT
EXISTING 5/8" GYP. BOARD

EXISTING METAL STUD WALL AND 5/8" GYP BOARD

EXISTING CEILING TYPE AND CEILING HEIGHT

COMBINE ALL LOOSE COMBINES IN A SLEEVE OR CONDUIT FOR A CLEAN 'THRU WALL PENETRATION

EXTEND 3-5/8" METAL STUD TO TOP OF EXISTING METAL STUD AND FASTEN
EXTEND 5/8" GYP BOARD TO EXISTING GYP BOARD. ENSURE NO GAPS OCCUR IN BETWEEN

ATTACH DEFLECTION TRACK WITH ANCHORS @ 16" O.C.

SEALANT
EXISTING 5/8" GYP. BOARD

EXISTING METAL STUD WALL AND 5/8" GYP BOARD

EXISTING CEILING TYPE AND CEILING HEIGHT

COMBINE ALL LOOSE COMBINES IN A SLEEVE OR CONDUIT FOR A CLEAN 'THRU WALL PENETRATION

EXTEND 3-5/8" METAL STUD TO TOP OF EXISTING METAL STUD AND FASTEN
EXTEND 5/8" GYP BOARD TO EXISTING GYP BOARD. ENSURE NO GAPS OCCUR IN BETWEEN

ATTACH DEFLECTION TRACK WITH ANCHORS @ 16" O.C.

SEALANT
EXISTING 5/8" GYP. BOARD

EXISTING METAL STUD WALL AND 5/8" GYP BOARD

EXISTING CEILING TYPE AND CEILING HEIGHT

COMBINE ALL LOOSE COMBINES IN A SLEEVE OR CONDUIT FOR A CLEAN 'THRU WALL PENETRATION

EXTEND 3-5/8" METAL STUD TO TOP OF EXISTING METAL STUD AND FASTEN
EXTEND 5/8" GYP BOARD TO EXISTING GYP BOARD. ENSURE NO GAPS OCCUR IN BETWEEN

ATTACH DEFLECTION TRACK WITH ANCHORS @ 16" O.C.

SEALANT
EXISTING 5/8" GYP. BOARD

EXISTING METAL STUD WALL AND 5/8" GYP BOARD

EXISTING CEILING TYPE AND CEILING HEIGHT

COMBINE ALL LOOSE COMBINES IN A SLEEVE OR CONDUIT FOR A CLEAN 'THRU WALL PENETRATION

EXTEND 3-5/8" METAL STUD TO TOP OF EXISTING METAL STUD AND FASTEN
EXTEND 5/8" GYP BOARD TO EXISTING GYP BOARD. ENSURE NO GAPS OCCUR IN BETWEEN

1. A = NON-RATED WALL, B = NON-RATED WALL
2. PAINT MANUFACTURER: DUNN EDWARDS
3. PAINT COLOR TO MATCH EXISTING
4. BLEND AND MATCH EXISTING WALL / TEXTURE FINISH
General Notes

A. PLANS ARE GRAPHIC REPRESENTATIONS. CONTACT BUILDING MANAGEMENT WITH ANY QUESTIONS REGARDING INTENT. ALL AREAS TO BE REMODELED REQUIRE FIELD VERIFICATION PRIOR TO PROJECT START.

B. CONTRACTOR TO COORDINATE ALL UTILITY SHUT DOWNS AND TIE-INS WITH THE OWNER.

Keyed Notes

1. EXISTING CONSTANT VOLUME, DOUBLE DUCT TERMINAL UNIT TO REMAIN.
2. EXISTING MIXING BOX TO REMAIN.
3. DEMO EXISTING SUPPLY DUCT TO THE LIMITS SHOWN. MAINTAIN REBUILDING FOR REUSE WITH NEW SUPPLY AIR VALVES. REFER TO SHEET M-101, MECHANICAL NEW WORK PLAN.
4. REMOVE EXISTING SOUND TRAP. MAINTAIN DISTRIBUTION FOR REUSE.
5. EXISTING SA / EA DIFFUSER TO REMAIN. TYPICAL.
6. EXISTING GENERAL EXHAUST DUCT DROPS DOWN TO FINISH FLOOR SHALL BE DEMO'D BACK TO MAIN AND CAPPED. REFER TO EXHIBIT W, THIS SHEET.
7. EXISTING GENERAL EXHAUST DUCT DROPS DOWN TO FINISH FLOOR SHALL BE DEMO'D BACK TO MAIN AND CAPPED. REFER TO SHEET M-101, MECHANICAL NEW WORK PLAN.
8. DEMO EXISTING DUCTWORK TO LIMITS SHOWN. MAINTAIN MIXING BOX AND DIFFUSERS FOR RE-USE.
9. REMOVE EXISTING DIFFUSER / GRILLE AND REPLACE WITH ACOUSTICAL CEILING TILE (SIMILAR TO EXISTING).
10. REMOVE EXISTING EXHAUST DUCTS TO LIMITS SHOWN AND CAP, LEAKTIGHT. REFER TO SHEET M-101, MECHANICAL NEW WORK PLAN.
General Notes

- Plans are graphic representations. Contact facilities with questions regarding scope of work. Contractor is responsible to perform field verification to all areas prior to project start.

- Contractor to coordinate all utility shut downs and tie-ins with the owner.

Keyed Notes

1. Occupancy sensor (ECCO Flex or Leutron) with associated relay to provide a complete and functional system.

2. Install and connect new LEV. General exhaust valve. Adjust air velocity as indicated on schedule. This sheet provides coordinates for existing conditions. Field coordinate existing conditions prior to install.

3. Install and connect new LEV. General exhaust valve to modulate room pressurization as indicated on schedule. This sheet provides coordinates for existing conditions. Field coordinate existing conditions prior to install.

4. Connect new supply air plenum to existing mixing box. Provide transits as required for a seal tight connection.

5. New DDC, fully modulating actuator, model ECCO Flex. Refer to equipment schedule and controls diagram, sheet M-603.

6. Provide bleed airflow sensor, EBTRON model II EF-X2000-B with display and wall kit. Install approximately 6”-10” below finished ceiling. Field coordinate existing conditions prior to install.

- Refer to control equipment schedule and controls diagram, sheet M-603.
NOTES:
1. CLOSURE COLLARS ARE NOT TO BE USED FOR SUPPORTING DUCT. PROVIDE INDEPENDENT SUPPORT ON EITHER SIDE OF WALL PER SMACNA CONSTRUCTION STANDARDS.
2. WHERE WALL CONSTRUCTION DOES NOT ALLOW FOR ROUND OPENING PROVIDE SHEET METAL CLOSURE PIECES FASTENED AND SEALED TO BOTH SIDES OF WALL.
3. FASTENERS TO BE SM SCREWS FOR METAL STUD WALLS, POWDER DRIVEN FASTENERS FOR CONCRETE WALLS OR MASONRY ANCHORS FOR MASONRY WALLS.

FASTENER MAX SPACING 12" O.C. MIN. 4 PER SIDE (SEE NOTE #2)
PACK OPENING AROUND DUCT WITH FIRESAFING (ALL SIDES) 1" MAX. AVG. CLEARANCE
3" ANGLE CLOSURE COLLAR, SAME MATERIAL AS DUCT (SEE NOTE #1)

1. PIPE MUST FLOAT IN OPENING AND NOT HAVE CONTACT WITH WALL.
2. PROVIDE 1" CLEARANCE AROUND PIPE. PROVIDE FIBERGLASS COMPRESSED TO 50% OF ORIGINAL THICKNESS WRAPPED OR STUFFED AROUND PIPE. (FOR PIPE OR DUCT WITH DIAMETER LESS THAN 8" PROVIDE 1/2" CLEARANCE)

ESCUTCHEON PLATE (EA. SIDE) WHERE PIPING IS EXPOSED ON FINISH WALLS SEAL FOR NON-RATED WALL WITH BACKER ROD TYP. BOTH SIDES. FOR CLEARANCE 1/2" OR MORE SEAL WITH WEP WITH FIRESAFING CAULK ALL AROUND.

NOTES:
1. PIPE MUST FLOAT IN OPENING AND NOT HAVE CONTACT WITH WALL.
2. PROVIDE 1" CLEARANCE AROUND DUCT WITH FIRESAFING (ALL SIDES)
3. PACK OPENING AROUND DUCT WITH FIRESAFING (ALL SIDES) 1" AVG. CLEARANCE
4. CLOSURE COLLAR FOR BOLTED DUCT LOCKING MECHANISM L-SLOT AND PIN FOR MANUAL LOCKING OF RIGID DUCT THREADED ROD FOR MANUAL LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT COUNTER SUNK SCREWS ATTACHED TO PANEL WITH NUT WELDED TO WASHER DUCT LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT 4' SLEEVE (NOT REQ'D FOR PENETRATIONS THRU SMOOTH WALLS) HOLDSLEEVE BACK 1/8" TO 1/4" FROM WALL FACE
5. PIPE OR DUCT SIZE AS INDICATED ON PLAN

NOTES:
1. PIPE OR DUCT SIZE AS INDICATED ON PLAN
2. PROVIDE 1" CLEARANCE AROUND PIPE. PROVIDE FIBERGLASS COMPRESSED TO 50% OF ORIGINAL THICKNESS WRAPPED OR STUFFED AROUND PIPE. (FOR PIPE OR DUCT WITH DIAMETER LESS THAN 8" PROVIDE 1/2" CLEARANCE)
3. CLOSURE COLLARS ARE NOT TO BE USED FOR SUPPORTING DUCT. PROVIDE INDEPENDENT SUPPORT ON EITHER SIDE OF WALL PER SMACNA CONSTRUCTION STANDARDS.
4. WHERE WALL CONSTRUCTION DOES NOT ALLOW FOR ROUND OPENING PROVIDE SHEET METAL CLOSURE PIECES FASTENED AND SEALED TO BOTH SIDES OF WALL.

NOTES:
1. PIPE MUST FLOAT IN OPENING AND NOT HAVE CONTACT WITH WALL.
2. PROVIDE 1" CLEARANCE AROUND DUCT WITH FIRESAFING (ALL SIDES)
3. PACK OPENING AROUND DUCT WITH FIRESAFING (ALL SIDES) 1" AVG. CLEARANCE
4. CLOSURE COLLAR FOR BOLTED DUCT LOCKING MECHANISM L-SLOT AND PIN FOR MANUAL LOCKING OF RIGID DUCT THREADED ROD FOR MANUAL LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT COUNTER SUNK SCREWS ATTACHED TO PANEL WITH NUT WELDED TO WASHER DUCT LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT 4' SLEEVE (NOT REQ'D FOR PENETRATIONS THRU SMOOTH WALLS) HOLDSLEEVE BACK 1/8" TO 1/4" FROM WALL FACE
5. PIPE OR DUCT SIZE AS INDICATED ON PLAN

NOTES:
1. PIPE MUST FLOAT IN OPENING AND NOT HAVE CONTACT WITH WALL.
2. PROVIDE 1" CLEARANCE AROUND DUCT WITH FIRESAFING (ALL SIDES)
3. PACK OPENING AROUND DUCT WITH FIRESAFING (ALL SIDES) 1" AVG. CLEARANCE
4. CLOSURE COLLAR FOR BOLTED DUCT LOCKING MECHANISM L-SLOT AND PIN FOR MANUAL LOCKING OF RIGID DUCT THREADED ROD FOR MANUAL LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT COUNTER SUNK SCREWS ATTACHED TO PANEL WITH NUT WELDED TO WASHER DUCT LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT 4' SLEEVE (NOT REQ'D FOR PENETRATIONS THRU SMOOTH WALLS) HOLDSLEEVE BACK 1/8" TO 1/4" FROM WALL FACE
5. PIPE OR DUCT SIZE AS INDICATED ON PLAN

NOTES:
1. PIPE MUST FLOAT IN OPENING AND NOT HAVE CONTACT WITH WALL.
2. PROVIDE 1" CLEARANCE AROUND DUCT WITH FIRESAFING (ALL SIDES)
3. PACK OPENING AROUND DUCT WITH FIRESAFING (ALL SIDES) 1" AVG. CLEARANCE
4. CLOSURE COLLAR FOR BOLTED DUCT LOCKING MECHANISM L-SLOT AND PIN FOR MANUAL LOCKING OF RIGID DUCT THREADED ROD FOR MANUAL LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT COUNTER SUNK SCREWS ATTACHED TO PANEL WITH NUT WELDED TO WASHER DUCT LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT 4' SLEEVE (NOT REQ'D FOR PENETRATIONS THRU SMOOTH WALLS) HOLDSLEEVE BACK 1/8" TO 1/4" FROM WALL FACE
5. PIPE OR DUCT SIZE AS INDICATED ON PLAN

NOTES:
1. PIPE MUST FLOAT IN OPENING AND NOT HAVE CONTACT WITH WALL.
2. PROVIDE 1" CLEARANCE AROUND DUCT WITH FIRESAFING (ALL SIDES)
3. PACK OPENING AROUND DUCT WITH FIRESAFING (ALL SIDES) 1" AVG. CLEARANCE
4. CLOSURE COLLAR FOR BOLTED DUCT LOCKING MECHANISM L-SLOT AND PIN FOR MANUAL LOCKING OF RIGID DUCT THREADED ROD FOR MANUAL LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT COUNTER SUNK SCREWS ATTACHED TO PANEL WITH NUT WELDED TO WASHER DUCT LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT 4' SLEEVE (NOT REQ'D FOR PENETRATIONS THRU SMOOTH WALLS) HOLDSLEEVE BACK 1/8" TO 1/4" FROM WALL FACE
5. PIPE OR DUCT SIZE AS INDICATED ON PLAN

NOTES:
1. PIPE MUST FLOAT IN OPENING AND NOT HAVE CONTACT WITH WALL.
2. PROVIDE 1" CLEARANCE AROUND DUCT WITH FIRESAFING (ALL SIDES)
3. PACK OPENING AROUND DUCT WITH FIRESAFING (ALL SIDES) 1" AVG. CLEARANCE
4. CLOSURE COLLAR FOR BOLTED DUCT LOCKING MECHANISM L-SLOT AND PIN FOR MANUAL LOCKING OF RIGID DUCT THREADED ROD FOR MANUAL LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT COUNTER SUNK SCREWS ATTACHED TO PANEL WITH NUT WELDED TO WASHER DUCT LOCKING MECHANISM, L-SLOT AND PIN FOR RIGID DUCT 4' SLEEVE (NOT REQ'D FOR PENETRATIONS THRU SMOOTH WALLS) HOLDSLEEVE BACK 1/8" TO 1/4" FROM WALL FACE
5. PIPE OR DUCT SIZE AS INDICATED ON PLAN
B.A.S. BASED LABORATORY AIRFLOW SAFETY STANDARD CONTROLS DIAGRAM
LABORATORY HOOD EXHAUST - LAB ROOMS 121 AND 125

EQUIPMENT NOTE

1. MAKE-UP AIR DAMPER (AS PART OF EXISTING MIXING BOX)
2. HOT DECK / COLD DECK MIXING BOX
3. GENERAL EXHAUST VALVE
4. LAB HOOD EXHAUST VALVE
5. HOOD FLOW DISPLAY
6. HOOD FLOW BUZZER
7. HOOD FACE VELOCITY
8. HOOD OCCUPANCY SENSOR
9. SASH POSITION SENSOR
10. SASH ALARM PIEZO BUZZER
11. OCCUPANCY SENSOR WITH ASSOCIATED RELAY
SEQUENCE OF OPERATION

GENERAL

PROGRAMMING: THE FMS SHALL BE PROGRAMMED ACCORDING TO THE FOLLOWING
PROCEDURE AND OPERATING CONDITIONS:

1. EACH LAB OR FUM HOOD SHALL BE REQUIRED TO MEET THE MINIMUM AIR
CHANGE REQUIREMENTS FOR THE OCCUPANCY.

2. THE FMS SHALL BE REQUIRED TO PROVIDE A LINEAR ANALOG OUTPUT TO THE
CONTROL SYSTEM WHICH SHALL CONTROL THE VARIABLE VOLUME SUPPLY AIR
FLOW TO EACH LAB. THE SUPPLY AIR VOLUME MUST BE ADJUSTABLE TO
MEET THE AIR Change REQUIREMENTS FOR EACH LAB.

3. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE SUPPLY AIR FLOW TO EACH LAB BASED ON THE OCCUPANCY
HOURLY CHARTER.

4. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE EXHAUST AIR FLOW TO EACH LAB BASED ON THE OCCUPANCY
HOURLY CHARTER.

5. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE VAV FUM HOOD SYSTEM TO MEET THE AIR Change REQUIREMENTS
FOR EACH FUM HOOD.

6. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH LAB.

LABORATORY CONTROLS

1. EACH FUM HOOD SHALL BE REQUIRED TO INTEGRATE WITH THE FMS
TO PROVIDE A LINEAR ANALOG OUTPUT TO THE CONTROL SYSTEM WHICH SHALL
CONTROL THE FUM HOOD VOLUME FLOW AND THE FUM HOOD VOLUME FLOW
MUST BE ADJUSTABLE TO MEET THE AIR Change REQUIREMENTS FOR EACH FUM
HOOD.

2. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE FUM HOOD VOLUME FLOW TO EACH FUM HOOD BASED ON THE
OCCUPANCY HOURLY CHARTER.

3. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

4. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

5. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

6. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

7. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

8. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

9. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

10. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

11. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

12. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

13. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

14. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

15. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

16. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

17. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

18. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

19. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

20. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

21. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

22. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

23. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

24. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

25. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

26. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

27. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

28. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

29. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

30. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

31. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

32. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

33. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

34. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

35. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

36. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

37. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

38. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

39. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

40. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

41. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

42. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

43. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

44. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

45. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

46. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

47. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

48. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

49. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.

50. THE FMS SHALL BE REQUIRED TO PROVIDE A SCHEDULE FUNCTION TO
CONTROL THE STEAM DAMPER SYSTEM TO MEET THE STEAM THERMAL ENERGY
SCHEDULE FOR EACH FUM HOOD.
Approval of Lease: UNM Early Childhood Services Center, 4400 Alameda NE, Suites A and B, Albuquerque, NM, 87113
Memo

To: Teresa Costantinidis, Senior Vice President for Finance and Administration

From: Thomas M. Neale, Director of Real Estate

Date: February 15, 2022

Re: Request for Lease Approval – 4400 Alameda NE, Suites A and B, Albuquerque, NM 87113

On behalf of the University of New Mexico Early Childhood Services Center (ECSC) program, the Real Estate Department is seeking Regent’s approval to lease real property located at 4400 Alameda Boulevard NE, in Albuquerque, New Mexico. The property is a one-story office building containing 11,639 square feet and is located on the southside of Alameda Boulevard NE, west of I-25 and across from Albuquerque’s Balloon Fiesta Park.

ECSC provides integrated services, support and resources to early childhood professionals, programs, communities, families and children. UNM operates five ECSC locations across the state of New Mexico including Albuquerque, Espanola, Gallup, Roswell and Las Cruces. The Albuquerque ECSC is currently housed in multiple facilities and this lease will consolidate activities into one location.

The leased space contains a high density of partitioned office areas along with spaces designated for conference/classroom space and a resource lending library. The location provides good linkages to the targeted service areas of the northern portion of the Albuquerque metropolitan area, including Rio Rancho and Bernalillo.

The lease provisions include a ten-year term commencing at $16.50 per square foot, or $192,044 for the initial year. Rent escalates at 2.5% annually through the lease term. The Landlord is responsible for property taxes, insurance, structural repairs and maintenance, mechanical systems, and grounds maintenance. UNM will be responsible for utilities, telecommunication/data, and janitorial services. UNM will have one, three-year renewal option. A copy of the letter of the intent is attached.
Debbie Dupes, CCIM
First Vice President
505-837-4971
debbie.dupes@cbre.com

Cheryl Hardt
Senior Vice President
505-837-4975
cheryl.hardt@cbre.com

CBRE, Inc.
Advisory & Transaction Services
Tenant Counter 2-3-22
14 February 2022

Debbie Dupes
Cheryl Hardt

Via email: Debbie.dupes@cbre.com

Re: 4400 Alameda-Suites A and B
Letter of Intent (LOI) from the University of New Mexico

Dear Debbie and Cheryl:

Below is a response to your LOI. On behalf of the Regents of the University of New Mexico, we are pleased to present this Letter of Intent to lease 4400 Alameda, Suites A and B to you. Please consider this proposal as confidential between Tenant, Landlord and CBRE, Inc. Your response is requested within 5 days from receipt of this letter of intent.

Sincerely,

CBRE, Inc.

Debra L. Dupes CCIM
First Vice President

Cheryl Hardt
Senior Vice President

CBRE © 2022 All Rights Reserved. All information included in this letter/proposal pertaining to CBRE, Inc.—including but not limited to its operations, employees, technology and clients—is proprietary and confidential and supplied with the understanding that such information will be held in confidence and not disclosed to any third party without CBRE’s prior written consent. This letter/proposal is intended solely as a preliminary expression of general intentions, is for discussion purposes only, and does not create any agreement or obligation by CBRE to negotiate or continue negotiations. CBRE shall have no contractual obligation with respect to the matters referred to herein unless and until a definitive, fully-executed agreement has been delivered by the parties. Prior to delivery of a definitive executed agreement, and without any liability to the other party, either party may (1) propose different terms from those summarized herein, (2) enter into negotiations with other parties and/or (3) unilaterally terminate all negotiations with the other party hereto.
Letter of Intent

Tenant: The Regents of the University of New Mexico, a body corporate of the State of New Mexico, on behalf of the Early Childhood Services Center.

Landlord: Please provide the legal ownership entity, including its State of Domicile. Mike and Kathleen Mechtenbier Trust

Use: General office use, or all other lawful purposes.

Building/Property: 4400 Alameda NE, Albuquerque, NM 87113

Premises: Suites A and B, containing approximately 11,639 RSF. Tenant will be permitted to verify the size of the proposed area.

Lease Commencement Date: The lease is subject to approval by the Board of Regents and the Higher Education Department which shall take place no later than May 2022. Please state the earliest Tenant could occupy pending final approval of the lease. Lease commencement date shall be 90 days from full execution of lease between Landlord and Tenant.

Rent Commencement: Rent Commencement shall be based upon the Lease Commencement Date, taking into consideration abated rent period(s).

Early Access: Tenant shall have access to the Premises, at no charge, for installation of fixtures, telecommunications, and other items as it relates to getting the Premises ready for occupancy 4 weeks prior to Lease Commencement.

Lease Term: 10 Years 2 month.

Renewal Options: Tenant shall have 1 option to renew the lease for 1 additional terms of 3 years. Tenant shall give Landlord 6 months’ prior written notice of its intention to exercise such option. Such Renewal Option will be at 3% annual increases.

Base Rent: Year 1 of the Lease Term shall begin at $16.50/RSF per the Base Rent schedule below based on 2.5% annual increases for the Lease Term is as follows:
14 February 2022
4400 Alameda NE, Suites A and B
UNM
Page 3

<table>
<thead>
<tr>
<th>Period Commencing</th>
<th>Rate</th>
<th>Monthly Rent</th>
<th>Annual Rent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>$16.50</td>
<td>$16,003.63</td>
<td>$192,043.50</td>
</tr>
<tr>
<td>Year 2</td>
<td>$16.91</td>
<td>$16,403.72</td>
<td>$196,844.59</td>
</tr>
<tr>
<td>Year 3</td>
<td>$17.34</td>
<td>$16,813.81</td>
<td>$201,765.70</td>
</tr>
<tr>
<td>Year 4</td>
<td>$17.77</td>
<td>$17,224.15</td>
<td>$206,809.84</td>
</tr>
<tr>
<td>Year 5</td>
<td>$18.21</td>
<td>$17,665.01</td>
<td>$211,980.09</td>
</tr>
<tr>
<td>Year 6</td>
<td>$18.67</td>
<td>$18,106.63</td>
<td>$217,279.59</td>
</tr>
<tr>
<td>Year 7</td>
<td>$19.13</td>
<td>$18,559.30</td>
<td>$222,711.58</td>
</tr>
<tr>
<td>Year 8</td>
<td>$19.61</td>
<td>$19,023.28</td>
<td>$228,279.37</td>
</tr>
<tr>
<td>Year 9</td>
<td>$20.10</td>
<td>$19,498.86</td>
<td>$233,986.36</td>
</tr>
<tr>
<td>Year 10</td>
<td>$20.61</td>
<td>$19,986.33</td>
<td>$239,836.02</td>
</tr>
</tbody>
</table>

Two month free rent

Tenant Improvements:
Tenant requires a turnkey installation based upon a mutually acceptable space plan. Please advise when Tenant may meet with Landlord’s tenant improvement contractor to prepare a space plan and advise as to layout and finishes of the proposed Premises. Preliminary plan attached.

Restoration:
Tenant shall not have any restoration obligations at the end of the Lease Term other than to remove its personal property form the Premises and leave it in broom-clean condition. Tenant shall not have the obligation to remove any alterations at the end of the Lease Term unless Landlord reasonably requires Tenant to do so at the time it approves Tenant’s plan(s).

Assignment & Subletting:
Tenant shall have the right to assign or sublease the Premises or any part to any other University administered programs including without limitation, any University auxiliary, collaboration or joint venture, for any remaining term of the Lease or extension thereof. Tenant shall not otherwise assign or sublease the Premises without first obtaining the written consent of Landlord, which shall not be unreasonably withheld.

Lease Type:
Modified Gross. Please explain building expenses that are Tenant’s responsibility. Tenant is responsible for individually metered electric and gas utilities, prorata share of water, sewer and refuse, interior maintenance (i.e. replacement of light bulbs, ballasts, clogged toilets and sinks, glass breakage, recharging of fire extinguishers, pest control, janitorial, snow removal and prorate share of increases in property taxes and fire and extended coverage insurance of 2022 base year. Snow removal for Suites A and B in the past was performed by previous Suite A and B tenants. Landlord assumes
since Tenant has its own facilities that they would use their own facilities people for snow removal.

Please see Tenant’s standard lease form attached.

Security Deposit: None.

Rental Abatement: Landlord will abate the first 2 month of Rent.

Security: Tenant will be permitted to tie its Premises security system into the Building’s alarm and access system.

Please describe Landlord’s current security measures. Tenant is responsible for its own alarm and security system.

Parking: Please define the number of surface parking spaces available to Tenant. 60 parking spaces.

ADA and Code Compliance: The Building and the Premises, as of the Commencement Date, will be ADA compliant. Any costs associated with ADA compliance will be at the Landlord’s sole cost and expense. Landlord at its sole cost and expense, will cause the Building and all related improvements to be in compliance with all codes and regulations pursuant to any federal, state or local government law, and shall so represent such compliance to Tenant.

Broadband Access & Fiber: Please indicate Broadband and Fiber providers available to the Tenant. Comcast and Century Link.

Signage: Landlord shall provide Building standard directory and Suite signage. Please state exterior building signage opportunities available to tenant. Two monument signs for tenant’s identification in front of Suite A and Suite B.

Holdover: Tenant’s holding over or continued use or occupancy shall be construed as a tenancy from month-to-month at 115% of then current rent at the end of the lease term and subject to the same conditions set forth in the Lease.

Subordination Agreement/Non-disturbance: Throughout the term of the lease, and any extension thereof, Landlord shall have the right to mortgage, assign, sell or otherwise convey its interest in the Premises and Tenant shall, at the request of Landlord, subordinate its interest to that of any mortgagee or other lender of Landlord; provided, however, that Tenant's quiet enjoyment of the Premises shall not be disturbed so long as Tenant pays the Rent and
fulfills the other obligations imposed upon it by the lease. Upon request of Landlord, Tenant will execute any document reasonably required to give effect to this paragraph. In the event of a transfer or mortgage of Landlord’s interest in the Premises, or upon Landlord’s written request, Tenant agrees to execute, acknowledge and deliver to Landlord, within ten (10) days after written request, in recordable form, a certificate certifying that the rights of Tenant in the Premises are subordinate to and inferior to those of the mortgage lender and certifying, among other things, that the lease is in full force and effect; that there are no deficiencies or offsets thereto, or stating those claimed by Tenant, as the case may be; that there are no uncured defaults in Landlord’s performance thereunder; and that not more than the current month’s rent has been paid in advance as of the date the written request was delivered. Tenant agrees that failure by Tenant to deliver such statement within such time shall be deemed conclusively to mean that the lease is in full force and effect without modifications except as may be represented by Landlord and that the requested representations are true and correct. In the event any proceedings are brought for foreclosure under any mortgage or deed of trust made by the Landlord or any predecessor or any successor covering the Premises, the Tenant shall attorn to the purchaser upon any foreclosure sale and recognize such purchaser as the Landlord under this lease. Property does not have any debt against it.

Landlord covenants that if and so long as Tenant pays the Rent and performs the covenants hereof, Tenant shall peaceably and quietly have, hold and enjoy the Premises for the term herein mentioned, subject to the provisions of the lease.

Funding Clause:

All State of New Mexico entities are subject to a funding clause in their leases. Should the proposed lease be terminated under the funding clause, Tenant will reimburse Landlord for unamortized Tenant improvement costs and commissions for the period of time from the date of termination through the end of the tenth lease year. The amortization rate for this calculation will be 6% per annum.

Loan & Encumbrances:

Please state the name of lender and provide information on the type of loan or other encumbrance (ground lease, etc.) currently related to the Building. State whether the lender or Landlord must approve the lease and/or any procedural issues of this type (including time frames for such approval), which may affect execution of the lease. Property has no debt against it.

Brokerage and Brokerage Disclosure:

Landlord acknowledges Debbie Dupes and Cheryl Hardt of CBRE, Inc. ("Tenant’s Broker") as Tenant’s transaction broker. Mike Leach and Greg Leach represent the Landlord. Upon execution of a lease between the parties, Tenant’s Broker will be entitled to a commission equal to 3% of the total lease consideration for the first 5 years of lease value plus NMGRT and 2% of the total lease consideration for the second 5 years of lease value plus NMGRT per the terms stipulated in a separate
agreement to be completed between Landlord's broker and Tenant's broker. Landlord shall be responsible for payment of brokerage commissions.

Landlord:
By: [Signature]
Print: Mike Alonzo
Title: Trustee
Date: 2-14-22

Tenant:
Regents of the University of New Mexico
Signed: [Signature]
Print: Julie Brasil
Title: Real Estate Manager
Date: 02/14/22
See preliminary space plans attached.
BUILDING A: TI EXHIBIT

- Remove Mail Boxes, patch, tape and texture walls on both sides (vestibule and open area)
- Remove existing tile
- Leave existing flooring

- New Wood Laminate
- New Carpet

4400-A ALAMEDA BLVD. NE
BUILDING B: TI EXHIBIT

- Remove Walls to create Open Office Cubicle Area
- LEAVE 1/2 WALL @ 42"
- NEW WOOD
- NEW WOOD
- NEW CARPET
- NEW CARPET
- NEW CARPET
- NEW CARPET
- NEW WOOD
- NEW WOOD
- NEW WOOD
- NEW CARPET
- NEW WOOD
#7

Approval of Appointment of a Representative of Lobo Development Corporation to the South Campus Tax Increment Development District (TIDD)
Memo

To: Regent Doug Brown, Chair, UNM Board of Regents
From: Kelly S. Ward, Director, Lobo Development Corporation
Date: February 25, 2022
Re: Appointments to South Campus Tax Increment Development District Board

Per the City of Albuquerque City Council approved South Campus Tax Increment Development District (TIDD) Formation Resolution, the Regents of the University of New Mexico are required to appoint two members of the five member South Campus Tax Increment Development District Board. One member shall represent the University of New Mexico and shall serve a four-year term and one member shall represent the Lobo Development Corporation and shall serve a six-year term as the Treasurer of the District. The other Board members will consist of one representative of the City of Albuquerque City Council appointed by the City Council, one representative of the City Administration appointed by the Mayor, and one representative of the State of New Mexico appointed by the Secretary of the Department of Finance and Administration.

We would like to formally request the appointments of Lisa Marbury, UNM Institutional Support Services Asst. Vice President, as the University of New Mexico representative, and Teresa Costantinidis, Lobo Development Corporation CEO, as the Lobo Development Corporation representative to the South Campus Tax Increment Development District (TIDD) Board.
#8

Approval of the Sale of Real Property to Tucker Acquisitions, LLC
Memo

To: Teresa Costantinidis, UNM Senior Vice President for Finance and Administration
From: Kelly S. Ward, Director of Business Development, Lobo Development Corporation
Tom Neale, Director, UNM Real Estate Department
Date: February 25, 2022
Re: Approval of the sale of real property to Tucker Acquisitions, LLC

Pursuant to Section 7.9 (Property Management) of the Regents’ Policy Manual, Lobo Development Corporation and the UNM Real Estate Department is seeking the Board of Regents’ approval of the sale of real property located at the northeast corner of Gibson Boulevard SE and Alumni Drive SE at UNM’s South Campus. The site is owned by the Regents of the University of New Mexico and the contract buyer is Tucker Acquisitions, LLC.

The Lobo Development Corporation (LDC) Board reviewed and approved the terms of the sale at its September 9, 2021 meeting. The agreement calls for final approval by the Board of Regents and notification to the Higher Education Department.

The sale is Tract 3 of the Gibson Commercial District Subdivision and is located at the northeast corner of Gibson Boulevard SE and Alumni Drive SE. The tract is approximately 1.3 acres. The sales price is $1,694,658.00, or $30.00 per square foot. Attached is a map identifying the location of the property.

The tract will be developed as a Raising Cane’s Chicken Fingers fast food restaurant with an option to develop a coffee shop adjacent to Raising Cane’s and within the tract.

LDC and UNM Real Estate have negotiated certain provisions which protect the site and the adjacent property from development and use for potential undesirable purposes. Specifically, the agreement calls for the owner to develop a Raising Cane’s Chicken Fingers restaurant and, if feasible, an adjoining coffee shop. No other uses are allowed on this parcel. If the developer fails to develop the property in less than five years, the University has the right to repurchase the parcel at a purchase price equal to this sale price.

UNM will have development plan review and approval responsibilities prior to construction commencement. Additionally, UNM will have the option to purchase the parcel, any improvements and interest in leases at any time after the tenth year following closing of the property.

Lastly, UNM will have the right of first refusal should the buyer seek to sell the parcel at any time in the future.

The tract is located within the recently approved South Campus Tax Increment Development District. Gross receipts tax generated from construction and operation will accrue to the district to support infrastructure improvements.

Recommendation: Approval
#9

Recommendations for Consent Agenda Items on Full Board of Regents’ Agenda
Recommendations for Consent Agenda Items on Full Board of Regents’ Agenda (Sandra Begay, Chair, Regents’ Finance & Facilities Committee)
UNM Foundation Fundraising and Investment Performance Report
Fundraising Performance Report

FY 21/22, December 31, 2021

Gift Commitments (Fiscal Year)

<table>
<thead>
<tr>
<th></th>
<th>This Quarter</th>
<th>FYTD 21/22</th>
<th>GOAL</th>
<th>FY 20/21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Campus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash/Cash Equivalents</td>
<td>$5,957,208</td>
<td>$8,607,721</td>
<td>N/A</td>
<td>$11,460,402</td>
</tr>
<tr>
<td>In-Kind</td>
<td>$395,022</td>
<td>$380,522</td>
<td>N/A</td>
<td>$973,521</td>
</tr>
<tr>
<td>Pledges</td>
<td>$752,000</td>
<td>$884,573</td>
<td>N/A</td>
<td>3,006,950</td>
</tr>
<tr>
<td>Testamentary</td>
<td>$3,980,000</td>
<td>$6,902,500</td>
<td>N/A</td>
<td>12,286,643</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>$11,048,230</td>
<td>$16,775,316</td>
<td>$27,900,000</td>
<td>$27,727,516</td>
</tr>
<tr>
<td>HSC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash/Cash Equivalents</td>
<td>$7,443,635</td>
<td>$13,582,084</td>
<td>N/A</td>
<td>$23,642,942</td>
</tr>
<tr>
<td>In-Kind</td>
<td>$450</td>
<td>$39,685</td>
<td>N/A</td>
<td>509,929</td>
</tr>
<tr>
<td>Pledges</td>
<td>$90,103</td>
<td>$1,465,103</td>
<td>N/A</td>
<td>211,263</td>
</tr>
<tr>
<td>Testamentary</td>
<td>$80,000</td>
<td>$992,964</td>
<td>N/A</td>
<td>5,687,014</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>$7,614,188</td>
<td>$16,079,836</td>
<td>$29,200,000</td>
<td>$30,051,148</td>
</tr>
<tr>
<td>Athletics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash/Cash Equivalents</td>
<td>$1,101,492</td>
<td>$2,162,712</td>
<td>N/A</td>
<td>$3,444,149</td>
</tr>
<tr>
<td>In-Kind</td>
<td>$2,300</td>
<td>$92,779</td>
<td>N/A</td>
<td>428,733</td>
</tr>
<tr>
<td>Pledges</td>
<td></td>
<td></td>
<td>N/A</td>
<td>-</td>
</tr>
<tr>
<td>Testamentary</td>
<td></td>
<td></td>
<td>N/A</td>
<td>-</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>$1,103,792</td>
<td>$2,255,491</td>
<td>$6,140,000</td>
<td>$3,897,882</td>
</tr>
<tr>
<td>Other Campus Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash/Cash Equivalents</td>
<td>$6,892,851</td>
<td>$11,153,055</td>
<td>N/A</td>
<td>$16,000,458</td>
</tr>
<tr>
<td>In-Kind</td>
<td>$14,416</td>
<td>$21,698</td>
<td>N/A</td>
<td>442,977</td>
</tr>
<tr>
<td>Pledges</td>
<td>$160,000</td>
<td>$160,000</td>
<td>N/A</td>
<td>445,000</td>
</tr>
<tr>
<td>Testamentary</td>
<td>$3,015,000</td>
<td>$4,150,000</td>
<td>N/A</td>
<td>6,810,540</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>$10,082,267</td>
<td>$15,484,953</td>
<td>$24,760,000</td>
<td>$23,698,975</td>
</tr>
<tr>
<td>Total</td>
<td>$29,848,477</td>
<td>$50,595,597</td>
<td>$88,000,000</td>
<td>$85,375,521</td>
</tr>
</tbody>
</table>

* Other campus units include KNME, KUNM, UNM Branch Campuses, President's Office, Provost's Office, Enrollment Services, Student Affairs and numerous other units not classified as main campus, HSC or athletics.

Gift Destinations

<table>
<thead>
<tr>
<th></th>
<th>This Quarter</th>
<th>FYTD 21/22</th>
<th>FY 20/21</th>
<th>FY 19/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNM Foundation</td>
<td>$21,407,298</td>
<td>$32,982,705</td>
<td>$57,597,074</td>
<td>$63,793,148</td>
</tr>
<tr>
<td>Reported Gifts</td>
<td>$8,441,179</td>
<td>$17,612,892</td>
<td>$27,778,447</td>
<td>$30,811,240</td>
</tr>
<tr>
<td>Total</td>
<td>$29,848,477</td>
<td>$50,595,597</td>
<td>$85,375,521</td>
<td>$94,604,388</td>
</tr>
</tbody>
</table>

* Reported Gifts = gifts made directly to KNME, KUNM, Lobo Club, and OVPR, but reported by UNM Foundation per MOA.

Fundraising Performance Report

FY 21/22, December 31, 2021

Gift Commitments (Fiscal Year)

<table>
<thead>
<tr>
<th></th>
<th>FYTD 21/22</th>
<th>FY 20/21</th>
<th>FY 19/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gifts for UNM's Current Use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash/Cash Equivalents</td>
<td>$27,103,174</td>
<td>$38,908,534</td>
<td>$48,953,571</td>
</tr>
<tr>
<td>In Kind</td>
<td>$534,884</td>
<td>$2,355,160</td>
<td>$3,381,622</td>
</tr>
<tr>
<td>Total Gifts for UNM's Current Use</td>
<td>$27,638,058</td>
<td>$41,263,694</td>
<td>$52,335,193</td>
</tr>
<tr>
<td>Gifts for UNM's Future</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash/Cash Equivalents to the Endowment</td>
<td>$8,402,398</td>
<td>$15,639,417</td>
<td>$9,817,176</td>
</tr>
<tr>
<td>Pledges</td>
<td>$2,509,676</td>
<td>$3,663,213</td>
<td>$1,565,438</td>
</tr>
<tr>
<td>Testamentary Gifts</td>
<td>$12,045,464</td>
<td>$24,809,197</td>
<td>$30,886,581</td>
</tr>
<tr>
<td>Total Gifts for UNM's Future</td>
<td>$22,957,538</td>
<td>$44,111,827</td>
<td>$42,269,195</td>
</tr>
<tr>
<td>Total Gift Commitments</td>
<td>$50,595,596</td>
<td>$85,375,521</td>
<td>$94,604,388</td>
</tr>
</tbody>
</table>
Fundraising Performance Report
FY 21/22, December 31, 2021

Pledges and Testamentary Gifts due

<table>
<thead>
<tr>
<th></th>
<th>FYTD 21/22</th>
<th>FY 20/21</th>
<th>FY 19/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning Balance Pledges Receivable</td>
<td>$ 6,718,906</td>
<td>$ 8,730,412</td>
<td>$ 19,822,964</td>
</tr>
<tr>
<td>Add: New Pledges</td>
<td>$ 2,509,676</td>
<td>$ 3,663,213</td>
<td>$ 1,565,438</td>
</tr>
<tr>
<td>Less: Pledge Payments</td>
<td>(3,996,867)</td>
<td>(4,951,719)</td>
<td>(3,489,332)</td>
</tr>
<tr>
<td>Less: Pledges Cancelled/Modified/Written Off</td>
<td>(9,000)</td>
<td>(723,000)</td>
<td>(9,168,658)</td>
</tr>
<tr>
<td>Ending Balance Pledges Receivable</td>
<td>$ 5,222,715</td>
<td>$ 6,718,906</td>
<td>$ 8,730,412</td>
</tr>
</tbody>
</table>

Testamentary Pledges Due
$ 240,942,067
Total Pledges and Testamentary Gifts Due
$ 246,164,782

<table>
<thead>
<tr>
<th>Performance Measures</th>
<th>This Quarter</th>
<th>FYTD 21/22</th>
<th>FY 20/21</th>
<th>FY 19/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gift Commitment Income</td>
<td>$ 29,848,477</td>
<td>$ 50,595,596</td>
<td>$ 85,375,521</td>
<td>$ 94,604,388</td>
</tr>
<tr>
<td># of Gifts</td>
<td>7,644</td>
<td>13,266</td>
<td>26,344</td>
<td>27,285</td>
</tr>
<tr>
<td># of Donors</td>
<td>4,232</td>
<td>5,766</td>
<td>8,826</td>
<td>8,914</td>
</tr>
</tbody>
</table>

Consolidated Investment Fund - Investment Performance
FY 21/22, December 31, 2021

<table>
<thead>
<tr>
<th>Investment Performance Results</th>
<th>Market Value</th>
<th>1-Year</th>
<th>3-Year</th>
<th>5-year</th>
<th>10-Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 21/22, December 31, 2021</td>
<td>$ 630,865,350</td>
<td>20.1%</td>
<td>15.1%</td>
<td>10.9%</td>
<td>9.1%</td>
</tr>
<tr>
<td>Custom Benchmark *</td>
<td>N/A</td>
<td>18.4%</td>
<td>15.5%</td>
<td>11.4%</td>
<td>9.2%</td>
</tr>
<tr>
<td>FY 20/21, June 30, 2021</td>
<td>$ 580,297,462</td>
<td>31.3%</td>
<td>11.0%</td>
<td>10.6%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Custom Benchmark *</td>
<td>N/A</td>
<td>29.9%</td>
<td>11.1%</td>
<td>10.8%</td>
<td>7.9%</td>
</tr>
<tr>
<td>NACUBO/Commonfund **</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

* Custom Benchmark is a blended benchmark consisting of indices for all asset classes.
** NACUBO/Commonfund Endowment Study ($101 million to $500 million)

Consolidated Investment Fund - Asset Allocation
FY 21/22, December 31, 2021

<table>
<thead>
<tr>
<th>Investment Class</th>
<th>Current Allocation</th>
<th>Target Allocation</th>
<th>Investment Policy Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Equity</td>
<td>33.2%</td>
<td>37.0%</td>
<td>10% - 50%</td>
</tr>
<tr>
<td>International Equity</td>
<td>22.3%</td>
<td>25.0%</td>
<td>10% - 40%</td>
</tr>
<tr>
<td>Fixed Income/Cash</td>
<td>12.8%</td>
<td>10.5%</td>
<td>10% - 50%</td>
</tr>
<tr>
<td>Real Assets</td>
<td>3.4%</td>
<td>3.5%</td>
<td>0% - 15%</td>
</tr>
<tr>
<td>Hedge Funds</td>
<td>7.9%</td>
<td>8.0%</td>
<td>5% - 20%</td>
</tr>
<tr>
<td>Private Investments</td>
<td>20.4%</td>
<td>16.0%</td>
<td>0% - 20%</td>
</tr>
</tbody>
</table>

Consolidated Investment Fund - Spending Distribution
FY 21/22, December 31, 2021

<table>
<thead>
<tr>
<th>CIF Spending Distribution</th>
<th>FY 21/22</th>
<th>FY 20/21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endowment Spending Distribution</td>
<td>$ 21,311,739</td>
<td>$ 18,253,344</td>
</tr>
<tr>
<td>Endowment Spending Distribution Rate</td>
<td>4.5%</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Page 2
In June 1983, the University of New Mexico Board of Regents established the Regents Endowment with $622,315. An additional $20,971,886 was added to the endowment from the sale of University land in fiscal years:

- 1985/86: $1,332,640
- 1987/88: $1,400,000
- 1988/89: $1,723,724
- 1989/90: $1,928,154
- 1990/91: $3,500,000
- 1990/91: $8,045,923 (Mesa Del Sol)
- 2006/07: $3,041,445
- 2007/08: $1,332,640
- 2008/09: $1,888,233 Purchase Properties
- 2009/10: $880,525 Regents Scholarship
- 2010/11: $1,100,000 Baseball Field
- 2011/12: $761,918 Innovate ABQ
- 2012/13: $1,000,000 UNM Branding Campaign
- 2013/14: $814,207 UNM Athletics Funding
- 2014/15: $798,039 UNM Athletics Funding
- 2015/16: $350,000 Enrollment Management Initiatives
- 2016/17: $487,500 Grand Challenges
- 2017/18: $162,500 Grand Challenges
- 2018/19: $162,500 Grand Challenges
- 2019/20: $487,500 Grand Challenges
- 2020/21: $162,500 Grand Challenges

The Regents Endowment is a “quasi endowment” which is co-invested along with other University and UNM Foundation endowments in the Consolidated Investment Fund. The endowment corpus and any annual spending distributions from the endowment to the University may be used at its discretion.

The Board of Regents initially designated the monies for recruitment and retention of outstanding faculty, student merit-based scholarship programs and to develop University owned real estate. In 2005, the Board of Regents approved Regents’ Policy 7.19 that expanded the use of monies. The University has historically designated the monies to scholarships, professorships, lectureships, fellowships, study abroad programs, minority faculty hiring, the President’s Advancement Fund, and tuition assistance programs.

Market Value (at 12/31/2021): $33,526,054

CIF Investment Performance:
- FYTD: 6.7%
- 1-Year: 20.1%
- 3-Year: 15.1%
- 5-Year: 10.9%
- 10-Year: 9.1%

Spending Distributions:
- 2017/18: $964,646
- 2018/19: $939,572
- 2019/20: $917,053
- 2020/21: $947,085

2021/22: $1,132,569

Withdrawals from Corpus:
- 2005/06: $2,000,000 ASM Student Investment Fund
- 2005/06: $1,888,233 Purchase Properties
- 2008/09: $880,525 Regents Scholarship
- 2012/13: $1,100,000 Baseball Field
- 2014/15: $761,918 Innovate ABQ
- 2016/17: $1,000,000 UNM Branding Campaign
- 2017/18: $814,207 UNM Athletics Funding
- 2018/19: $798,039 UNM Athletics Funding
- 2019/20: $350,000 Enrollment Management Initiatives
- 2019/20: $487,500 Grand Challenges
- 2020/21: $162,500 Grand Challenges
Winrock Land Sale Endowment

In November 2001, the University of New Mexico Board of Regents established the Winrock Land Sale Endowment with $25 million in proceeds from the sale of the Winrock Shopping Center property.

The Winrock Land Sale Endowment is a “quasi endowment” which is co-invested along with other University and UNM Foundation endowments in the Consolidated Investment Fund. The endowment corpus and any annual spending distributions from the endowment to the University may be used at the Regents' discretion.

The University has historically designated the monies to national merit scholarships, need-based financial aid, faculty retention, graduate fellowships and travel grants, capital improvements. To date, over $19 million has been distributed from the endowment for these programs.

Market Value (at 12/31/2021): $35,695,641

<table>
<thead>
<tr>
<th>CIF Investment Performance:</th>
<th>FYTD:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.7%</td>
</tr>
<tr>
<td>1-Year</td>
<td>20.1%</td>
</tr>
<tr>
<td>3-Year</td>
<td>15.1%</td>
</tr>
<tr>
<td>5-Year</td>
<td>10.9%</td>
</tr>
<tr>
<td>10-Year</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spending Distributions:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(5-year History)</td>
<td></td>
</tr>
<tr>
<td>2017/18</td>
<td>$1,024,422</td>
</tr>
<tr>
<td>2018/19</td>
<td>$1,027,828</td>
</tr>
<tr>
<td>2019/20</td>
<td>$1,034,960</td>
</tr>
<tr>
<td>2020/21</td>
<td>$1,108,186</td>
</tr>
<tr>
<td>2021/22</td>
<td>$1,205,861</td>
</tr>
</tbody>
</table>
Hugh B. and Helen K. Woodward Endowment

In 1982, the University of New Mexico Board of Regents established the Hugh B. and Helen K. Woodward Endowment to receive and invest distributions from the Woodward Trust.

The University receives 45% of the annual net income from the Woodward Trust administered by the Sandia Foundation, a Hugh and Helen Woodward Charity, in accordance with the will of Hugh B. Woodward. UNM’s share of these annual distributions (approximately $1.4 million annually) from the Sandia Foundation are deposited in the Hugh B. and Helen K. Woodward Endowment.

The Hugh B. and Helen K. Woodward Endowment is co-invested along with other University and UNM Foundation endowments in the Consolidated Investment Fund

The Last Will and Testament of Mr. Woodward stated:
It is my hope and wish, but I do not require, that a substantial portion of the annual net income shall be used by the Regents of the University of New Mexico: (1) to financially assist deserving students to begin and complete their college education, (2) to establish and maintain scholastic awards, grants scholarships and prizes to be conferred upon individual students, including students in the School of Law and the School of Medicine, when established, in recognition of achievement and usefulness to said university and to its student body, and (3) to supplement regular salaries of the Dean of the School of Law and any deserving full professor of said school and the Dean of the School of Medicine and any deserving full professor of said school devoting full time to his professional employment. No more than Six Thousand Dollars ($6,000.00) of the moneys passing to the Regents of the University of New Mexico annually shall be utilized to supplement the salaries as provided in subpart (3) of this paragraph.

Market Value (at 12/31/2021): $72,207,082

<table>
<thead>
<tr>
<th>CIF Investment Performance:</th>
<th>6.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FYTD:</td>
<td></td>
</tr>
<tr>
<td>1-Year</td>
<td>20.1%</td>
</tr>
<tr>
<td>3-Year</td>
<td>15.1%</td>
</tr>
<tr>
<td>5-Year</td>
<td>10.9%</td>
</tr>
<tr>
<td>10-Year</td>
<td>9.1%</td>
</tr>
</tbody>
</table>

Spending Distributions:

<table>
<thead>
<tr>
<th>(5-year History)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2017/18</td>
<td>$2,146,914</td>
</tr>
<tr>
<td>2018/19</td>
<td>$2,236,177</td>
</tr>
<tr>
<td>2019/20</td>
<td>$2,330,920</td>
</tr>
<tr>
<td>2020/21</td>
<td>$2,562,137</td>
</tr>
<tr>
<td>2021/22</td>
<td>$2,862,091</td>
</tr>
</tbody>
</table>

The FY2021/22 endowment distribution was used for Regents’ merit scholarships, presidential scholarships, UNM scholars and national merit scholarships.
#11

Recommendations for Information Agenda Items to be Added to the Full Board of Regents’ Agenda
INFORMATION ITEM RECOMMENDATIONS:

Recommendations for Information Agenda Items to be Added to the Full Board of Regents’ Agenda (Sandra Begay, Chair, Regents’ Finance & Facilities Committee)
#12

EXECUTIVE SESSION
EXECUTIVE SESSION:

None